Animal Models of Diabetes and Insulin Resistance

Masakazu Shiota, D.V.M., Ph.D
An Organ System..... Course.
July 18, 2012
What is different between human and animals?

mouse rat dog human
What is different between human and animals?

Body Mass

mouse rat dog human
Species Differences
Body Mass
- Body Temperature and Basal Metabolic Rate -
Species Differences
Body Mass
- Body Temperature and Basal Metabolic Rate -
Differences between Human and Rodents

Body Mass
- Blood Pressure and Heart Rate -

Blood Pressure

<table>
<thead>
<tr>
<th>Animal</th>
<th>Blood Pressure (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>100</td>
</tr>
<tr>
<td>Rat</td>
<td>200</td>
</tr>
<tr>
<td>Mouse</td>
<td>300</td>
</tr>
</tbody>
</table>

Heart Rate

<table>
<thead>
<tr>
<th>Animal</th>
<th>Heart Rate (beats/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>400</td>
</tr>
<tr>
<td>Rat</td>
<td>500</td>
</tr>
<tr>
<td>Mouse</td>
<td>700</td>
</tr>
</tbody>
</table>
Differences between Human and Rodents
Body Mass
- Blood Glucose Level and Glucose Kinetics -

<table>
<thead>
<tr>
<th></th>
<th>Blood Glucose</th>
<th>Glucose Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>100 mg/dl</td>
<td>10 mg/kg/min</td>
</tr>
<tr>
<td>Rat</td>
<td>100 mg/dl</td>
<td>10 mg/kg/min</td>
</tr>
<tr>
<td>Mouse</td>
<td>100 mg/dl</td>
<td>20 mg/kg/min</td>
</tr>
</tbody>
</table>
What is different between human and animals?

Body Mass

Life Span

mouse rat dog human
Zucker Diabetic Fatty (ZDF) Rats
A model of human type 2 diabetes associated with obesity

Plasma Glucose
- Lean littermates
- ZDF rats

Plasma Insulin

Plasma Glucagon

Hepatic Glucose Production
- 6 hours fasted ZDF rats

Glucokinase Protein

Regulatory Protein

Gluconeogenesis

Glycogenolysis
What is different between human and animals?

Body Mass

Life Span

Anatomy

mouse rat dog human
Differences between Human and Rodents

- Hepatic Architectures -

<table>
<thead>
<tr>
<th></th>
<th>Human</th>
<th>Rat/Mouse</th>
<th>Guinea Pig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innervation</td>
<td>Rich</td>
<td>Poor</td>
<td>Rich</td>
</tr>
<tr>
<td>Gap Junction</td>
<td>Poor</td>
<td>Rich</td>
<td>Poor</td>
</tr>
</tbody>
</table>

![Diagram showing differences between human, guinea pig, and rat/mouse with regards to Innervation and Gap Junction](image)

- **Human**
- **Guinea Pig**
- **Rat/Mouse**
What is different between human and animals?

- Body Mass
- Life Span
- Anatomy
- Enzyme Expression

mouse rat dog human
Differences between Human and Rodents
- Phosphoenolpyruvate carboxykinase Distribution in the Liver -

<table>
<thead>
<tr>
<th></th>
<th>Human</th>
<th>Rat Mouse</th>
<th>Guinea pig</th>
<th>Chicken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracellular Distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytoplasm</td>
<td>30~50</td>
<td>80~90</td>
<td>15~20</td>
<td>5</td>
</tr>
<tr>
<td>Mitochondria</td>
<td>50~70</td>
<td>10~20</td>
<td>80~85</td>
<td>95</td>
</tr>
<tr>
<td>Intralobular Distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periportal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytoplasm</td>
<td>++</td>
<td>++++</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Mitochondria</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Perivenous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytoplasm</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mitochondria</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td></td>
</tr>
</tbody>
</table>
Animal Models of Obesity

Origin: Single Gene

1. *ob/ob*: the obese mouse (*C57BL/6J ob* mice)

 • the protein product of this gene is leptin

 • Metabolic-endocrine anomalies - no response to satiety signal (hyperphagia)
 - hyperinsulinemia
 - insulin resistance
 - decreased insulin receptor function
 - defective thermogenesis

 • Pancreatic function
 - profuse and lasting insulin oversecretion
 - hyperplasia and hypertrophy

 • Lesions and complications
 - minor complications
 - infertility
Animal Models of Obesity

Origin: Single Gene

2. *db/db* : the diabetic mouse (C57BL/Ks db mice)

- Mutation of leptin receptor

- Metabolic-endocrine anomalies - no response to satiety signal (hyperphagia)
 - hyperinsulinemia with obesity, then hypoinsulinaemia and ketosis
 - insulin resistance
 - decreased insulin receptor function
 - defective thermogenesis

- Pancreatic function
 - labie islets
 - hypertrophy and enhanced replication followed by cell degeneration

- Lesions and complications
 - renal and vascular lesions
 - neuropathy
Animal Models of Obesity

Origin: Single Gene

3. fa/fa : Zucker fatty rat

• Mutation of leptin receptor

• Metabolic-endocrine anomalies - no response to satiety signal (hyperphagia)
 - hyperinsulinemia
 - insulin resistance
 - decreased insulin receptor function
 - defective thermogenesis

• Pancreatic function - profuse and lasting insulin oversecretion
 - hyperplasia and hypertrophy

• Lesions and complications - minor complications
 - infertility
Animal Models of Obesity

Origin: Single Gene ???

4. fa/fa : Zucker diabetic fatty rat

• Mutation of leptin receptor

• Metabolic-endocrine anomalies - no response to satiety signal (hyperphagia)
 - hyperinsulinemia with obesity,
 then hypoinsulinaemia and ketosis
 - insulin resistance
 - decreased insulin receptor function
 - develop fasting hyperglycemia

• Pancreatic function
 - labie islets
 - hypertrophy and enhanced replication
 followed by beta cell degeneration

• Lesions and complications
 - renal and vascular lesions
 - neuropathy and nephropathy
 - cataract
Animal Models of Obesity

Origin: Single Gene

5. *Cpefat*: the fat mouse (fat/fat or Cpefat/Cpefat)
 • Carboxypeptidase E is required for the cleavage of two arginine residues from the beta-chain of insulin during its processing from proinsulin.
 • no immunoreactive carboxypeptidase E protein in pancreas and pituitary.
 • a late-onset form of obesity (60 - 70g body weight at 24 weeks)
 • hyperproinsulinemia
 • the obesity is likely to result from a complex pattern of alterations in neuropeptide activity and secretion within the hypothalamic-pituitary system rather than from hyperproinsulinemia.
6. *tub/tub*: the tubby mice
 - this gene product has not been identified.
 - the obesity develops slowly and only becomes evident at 8 to 12 weeks of age

7. *Ay/a*: the yellow obese mouse
 - the agouti gene encodes a 131-amino acid protein that is normally uniquely expressed in the hair follicle.
 - obesity is less pronounced than in *ob/ob* and *db/db* mice
 - obesity is of later onset (8 to 12 weeks of age)
 - insulin resistance
 - the clear sexual dimorphism of the associated hyperglycemia
 - apparently normal activity of the hypothalamic-pituitary-adrenal axis
Animal Models of Obesity

Origin: Multigenic

1. **NZO mouse**
 - Metabolic-endocrine anomalies - insulin resistance
 - Insulinaemia is less severe than in ob mice
 - Pancreatic function - loss of first phase release but persistent oversecretion
 - Impaired islet glucose metabolism
 - Lesions and complication - renal lesions

2. **BSB mouse**

3. **AKR mouse**

4. **OM rat**
Animal Models of Obesity

Origin: Dietary

1. High fat

2. High fat/high carbohydrate (sucrose)

3. High carbohydrate (sucrose)

4. Cafeteria diets
Animal Models of Obesity

Origin: Neuroendocrine

1. Lesions
 • Electronic (ventromedial hypothalamus, paraventricular nucleus, amygdala)
 • Knife cut (hypothalamus, midbrain)
 • Chemical (goldtioglucose, monosodium glutamate, bipiperidyl mustard, ibotenic acid, kainic acid)
 • Viral (scrapie or canine ditemper virus)

2. Chemical infusions
 • NPY to paraventricular nucleus
 • Norepinephrine to ventromedial hypothalamus

3. Ovariectomy
4. Peripheral insulin
5. Antidepressants
6. Hibernation/migration
Animals with Obese-Type 2 diabetes-like Syndromes

Animals with long-lasting genetic diabesity

1. C57BL/6J obese (ob)
2. KK mice (yellow agouti Ay) and their hybride
3. NZO mice
4. Zucker fatty rats
5. Wister-Kyoto diabetic rats
6. Wister-Kyoto fatty rats

Animals with beta cell-losing diabesity

1. Zucker diabetic fatty rats
2. C57BL/Ks diabetic mouse (db)
Animals with Obese-Type 2 diabetes-like Syndromes

Animals with nutritionally induced type 2 diabetes

1. Psammomys obesus (sand rat), a gerbil on a regular laboratory diet

2. Non-human primate Macaca mulatta on an ad libitum diet

3. C57BL/6J mouse on a high caloric fat-disaccharide diet
Animals with non-Obese-Type 2 diabetes-like Syndromes

1. Goto-Kakizaki (GK) rats
 • Metabolic-endocrine abnormalities - hyperglycaemic
 - insulin resistance
 - non-ketotic
 • Pancreatic function - islet deformation
 - secretion abnormality
 - gradual beta-cell loss
 • Lesions and complication - nephropathy
 - neuropathy

2. Cohen sucrose-induced rats
 • Metabolic-endocrine anomalies - hyperglycaemic
 - transiently hyperinsulinaemic, then overtly diabetic
 • Pancreatic function - defective first phase and stimulated release
 • Lesions and complication - nephropathy
 - retinopathy
 - osteopathy
 - testicular degeneration
Animals with non-Obese-Type 2 diabetes-like Syndromes

3. **NON mice**
 - Metabolic-endocrine anomalies - inborn insulin synthesis deficit (no autoimmune involvement)
 - develop obesity on high energy diet
 - Pancreatic function - mild oversecretion despite partial insulin deficiency
 - Lesions and complication - fatty glomerular lesions

4. **WBN/Kob rats**
 - Metabolic-endocrine anomalies - gradual hypoinsulinemia due to fibrotic
 - inflammatory exo- and endocrine pancreas destruction
 - Pancreatic function - disappearance of both beta and alpha cells
 - Lesions and complication - cataracts, renal and neural lesions