The Regulation of Liver Glucose Production and Uptake

Vanderbilt University Medical Center
Nashville, TN USA

Dale Edgerton, PhD

An Organ Systems Approach to Experimental Targeting of the Metabolic Syndrome

July 21, 2011
DAILY GLUCOSE PROFILE

“Ordinary Daily Life”

OGTT

Tracer Method

- 3^{-3}H Glucose infusion
- Data analysis with two compartment model

A-V Difference Method

- Blood glucose difference across organ
- Blood flow across organ
\[([\text{Portal}] \times BF_p) + ([\text{Arterial}] \times BF_A) \Rightarrow ([\text{Hepatic}] \times BF_{\text{Total}}) \]
Glucose Production =

Glycogenolysis + Gluconeogenesis – Lactate Production – Glucose Oxidation
DISTRIBUTION OF LIVER BLOOD FLOW

Hepatic Vein

Liver

Hepatic artery (20%)

Portal vein (80%)

Intestine

Artery
Pancreatic Clamp

ARterial Plasma Glucose (mg/dl)

ARterial Plasma Insulin (µU/ml)

Glucose Production (mg/kg/min)
EFFECT OF A SELECTIVE INCREASE IN INSULIN

PLASMA INSULIN (μU/ml)

PLASMA GLUCAGON (pg/ml)

TIME (Min)
EFFECT OF A SELECTIVE INCREASE IN INSULIN

Pancreatic Clamp +/− Insulin

- ARTERIAL PLASMA GLUCOSE (mg/dl)
- NET HEPATIC GLUCOSE OUTPUT (mg/kg/min)
- NET GLY (mg/kg/min)
- GNG FLUX (mg/kg/min)

TIME (Min)
EFFECT OF SELECTIVE INSULIN DEFICIENCY

Pancreatic Clamp
Saline

Pancreatic Clamp
↓ Insulin

PLASMA INSULIN (µU/ml)

PLASMA GLUCAGON (pg/ml)

TIME (Min)

0 20 40

0

0 50 100

0

0 50 100

-40 0 60 120 180

-40 0 60 120 180

Portal
Art

Portal
Arterial
EFFECT OF SELECTIVE INSULIN DEFICIENCY

Pancreatic Clamp

+/- Insulin

ARTERIAL PLASMA GLUCOSE (mg/dl)

-40 0 60 120 180
0 100 200 300

NET HEPATIC GLUCOSE OUTPUT (mg/kg/min)

-40 0 60 120 180
-5 0 5 10

TIME (Min)

Control

Pancreatic Clamp

+/- Insulin

NET GLY (mg/kg/min)

-40 0 60 120 180
0 2 4 6

GNG FLUX (mg/kg/min)

-40 0 60 120 180
0 2 4 6

TIME (Min)
** (Redrawn from Holther-Nielsen et al.: Metabolism 45: 82-91, 1996) +
EFFECT OF A SELECTIVE INCREASE IN GLUCAGON
EFFECT OF A SELECTIVE INCREASE IN GLUCAGON

![Graphs showing changes in arterial plasma glucose, net hepatic glucose output, and glycolysis flux with and without glucagon.](image_url)
EFFECT OF SELECTIVE GLUCAGON DEFICIENCY

Pancreatic Clamp

Saline

PLASMA INSULIN (µU/ml)

0 10 20 30

-40 0 60 120 180

PLASMA GLUCAGON (pg/ml)

0 40 80 120

-40 0 60 120 180

Pancreatic Clamp

Glucagon

Portal

Arterial

EFFECT OF SELECTIVE GLUCAGON DEFICIENCY

Pancreatic Clamp

Saline

PLASMA INSULIN (µU/ml)

0 10 20 30

-40 0 60 120 180

PLASMA GLUCAGON (pg/ml)

0 40 80 120

-40 0 60 120 180

Pancreatic Clamp

Glucagon

Portal

Arterial

EFFECT OF SELECTIVE GLUCAGON DEFICIENCY

Pancreatic Clamp

Saline

PLASMA INSULIN (µU/ml)

0 10 20 30

-40 0 60 120 180

PLASMA GLUCAGON (pg/ml)

0 40 80 120

-40 0 60 120 180

Pancreatic Clamp

Glucagon

Portal

Arterial

EFFECT OF SELECTIVE GLUCAGON DEFICIENCY

Pancreatic Clamp

Saline

PLASMA INSULIN (µU/ml)

0 10 20 30

-40 0 60 120 180

PLASMA GLUCAGON (pg/ml)

0 40 80 120

-40 0 60 120 180

Pancreatic Clamp

Glucagon

Portal

Arterial

EFFECT OF SELECTIVE GLUCAGON DEFICIENCY

Pancreatic Clamp

Saline

PLASMA INSULIN (µU/ml)

0 10 20 30

-40 0 60 120 180

PLASMA GLUCAGON (pg/ml)

0 40 80 120

-40 0 60 120 180

Pancreatic Clamp

Glucagon

Portal

Arterial
EFFECT OF SELECTIVE GLUCAGON DEFICIENCY

ARTERIAL PLASMA GLUCOSE (mg/dl)

NET HEPATIC GLUCOSE OUTPUT (mg/kg/min)

GNG FLUX (mg/kg/min)

Pancreatic Clamp +/− Glucagon

Time (Min)

Control

Glucagon

NET GLY (mg/kg/min)

Pancreatic Clamp +/− Glucagon

Time (Min)
GLUCAGON VS GLUCOSE PRODUCTION
(INSULIN BASAL AND FIXED)

GLUCOSE PRODUCTION
(mg/kg/min)

HEPATIC SINUSOIDAL GLUCAGON
(pg/ml)
CATECHOLAMINES AND STRESS

Arterial Plasma Epinephrine (pg/ml)

- Overnight: 0
- Fast: 500
- Moderate Exercise: 1000
- Infection: 1500
- Ketoacidosis: 3000
- Hypoglycemia (40 mg/dl):

Arterial Plasma Noradrenaline (pg/ml)

- Overnight: 0
- Fast: 200
- Moderate Exercise: 400
- Infection: 600
- Ketoacidosis: 800
- Hypoglycemia (40 mg/dl):
EFFECT OF A SELECTIVE INCREASE IN EPINEPHRINE

Pancreatic Clamp

Saline

PLASMA EPI (pg/ml)

PLASMA NOREPI (pg/ml)

Time (Min)

Pancreatic Clamp

Epinephrine

Arterial

Portal

Time (Min)
EFFECT OF A SELECTIVE INCREASE IN EPINEPHRINE

ARterial plasma glucose (mg/dl)

Net hepatic glucose output (mg/kg/min)

Pancreatic Clamp +/- Epinephrine

NET GLY (mg/kg/min)

GNG flux (mg/kg/min)

Control

Epinephrine

TIME (Min)

-40 0 60 120 180

-40 0 60 120 180
EFFECT OF A SELECTIVE INCREASE IN SINUSOIDAL NOREPINEPHRINE

Pancreatic Clamp
Saline

Pancreatic Clamp
Norepinephrine

PLASMA EPI (pg/ml)

PLASMA NOREPI (pg/ml)

TIME (Min)

Arterial
Portal

Arterial
Portal
EFFECT OF A SELECTIVE INCREASE IN SINUSOIDAL NOREPINEPHRINE

ARTERIAL PLASMA GLUCOSE (mg/dl)

Pancreatic Clamp

+/− Portal Norepi

NET HEPATIC GLUCOSE OUTPUT (mg/kg/min)

Pancreatic Clamp

+/− Portal Norepi

GNG FLUX (mg/kg/min)

Control

TIME (Min)
DISPOSITION OF AN ORAL GLUCOSE LOAD

GLUCOSE

Muscle + Fat

Liver

CNS

RBC
INSULIN AND GLUCOSE AS STIMULATORS OF HEPATIC GLUCOSE UPTAKE

Peripheral Glucose Infusion

BLOOD GLUCOSE (mg/dl)

ARTERIAL PLASMA INSULIN (μU/ml)

NET HEPATIC GLUCOSE BALANCE (mg/kg/min)

TIME (Min)

OUTPUT

INPUT
OGTT IN THE CONSCIOUS DOG

BLOOD GLUCOSE (mg/dl)

ARTERIAL PLASMA INSULIN (μU/ml)

NET HEPATIC GLUCOSE BALANCE (mg/kg/min)

Oral Glucose

Portal

Arterial

Glucagon

Insulin

Output

Uptake

TIME (Min)
CONTROL OF GLUCOSE ENTRY INTO THE LIVER

- Glucose Load
- Portal Signal
- Insulin Level

Liver
EFFECT OF THE ROUTE OF GLUCOSE ADMINISTRATION ON GLUCOSE DISPOSITION IN THE BODY

-30 0 90 180 min

Tracers and Indocyanine Green
SRIF + Basal Portal Glucagon
Basal Portal Insulin
4 X Basal Portal Insulin

+ or

Peripheral Glucose Portal Glucose
Portal Glucose Peripheral Glucose
EFFECT OF THE ROUTE OF GLUCOSE ADMINISTRATION ON GLUCOSE DISPOSITION IN THE BODY

BLOOD GLUCOSE (mg/dl)

<table>
<thead>
<tr>
<th>Treatment Period</th>
<th>Artery</th>
<th>Portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Po</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EFFECT OF THE ROUTE OF GLUCOSE ADMINISTRATION ON GLUCOSE DISPOSITION IN THE BODY

Graphs:

- **Arterial Plasma Insulin (µU/ml):**
 - Control, Pe, Po

- **Arterial Plasma Glucagon (pg/ml):**
 - Control, Pe, Po

- **Hepatic Glucose Load (mg/kg/min):**
 - Control, Pe, Po

- **Net Hepatic Glucose Balance (mg/kg/min):**
 - Control, Pe, Po

Output, Uptake
HEPATIC GLUCOSE LOAD VS NET HEPATIC GLUCOSE UPTAKE

NET HEPATIC GLUCOSE UPTAKE (mg/kg/min)

HEPATIC GLUCOSE LOAD (mg/kg/min)

Portal Signal Active
Portal Signal Inactive
INSULIN VS NET HEPATIC GLUCOSE UPTAKE IN THE PRESENCE OF BASAL GLUCAGON AND A 2X BASAL HEPATIC GLUCOSE LOAD

NET HEPATIC GLUCOSE UPTAKE (mg/kg/min)

HEPATIC SINUSOIDAL INSULIN (µU/ml)

Portal Signal Active
Portal Signal Inactive
ARTERIAL-PORTAL GLUCOSE GRADIENT VS NET HEPATIC GLUCOSE UPTAKE IN THE PRESENCE OF BASAL GLUCAGON, 4X BASAL INSULIN AND 2X BASAL HEPATIC GLUCOSE LOAD

NET HEPATIC GLUCOSE UPTAKE (mg/kg/min)

ARTERIAL - PORTAL BLOOD GLUCOSE GRADIENT (mg/dl)
Effect of Glucagon on Hepatic Glucose Uptake

<table>
<thead>
<tr>
<th>Time (Min)</th>
<th>Basal Portal Ins+GGN</th>
<th>Portal Insulin (4-Fold Basal)</th>
<th>Portal Glucose (3.8 mg/kg/min)</th>
<th>Peripheral Glucose (to double HGL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-120</td>
<td></td>
<td></td>
<td></td>
<td>Peritoneal Somatostatin</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hi GGN
- (n=6)

| Portal Glucagon (ng/kg/min) | 1.2 |

Or

Lo GGN
- (n=6)

| Portal Glucagon (ng/kg/min) | 0.30 | 0.25 | 0.20 |
Glucose Infusion
Hormone Manipulation

Arterial Blood Glucose (mg/dl)
- High GGN
- Low GGN

Arterial Plasma Insulin (μU/ml)

Arterial Plasma Glucagon (pg/ml)

Time (Min)
HEPATIC GLUCOSE LOAD (mg/kg/min)

TOTAL GLUCOSE INFUSION (mg/kg/min)

NET HEPATIC GLUCOSE BALANCE (mg/kg/min)

Glucose Infusion
Hormone Manipulation

Time (Min)

High GGN
Low GGN

Output
Uptake

Total Glucose Load

Hormone Manipulation

Glucose Infusion