High-Resolution Microimaging of a Rabbit Larynx: Toward the Development of a Three-Dimensional Computational Model of Phonotrauma

Carolyn K. Novaleski, M.S., Tsuyoshi Kojima, M.D., Ph.D., Siyuan Chang, B.S., Haoxiang Luo, Ph.D., Daniel Colvin, Ph.D., Mark Does, Ph.D., Bernard Rousseau, Ph.D.

Departments of Otolaryngology, Hearing and Speech Sciences, Mechanical Engineering, Biomedical Engineering, & Institute of Imaging Science
Vanderbilt University School of Medicine (Nashville, TN)

INTRODUCTION

- Phonotrauma results in disruption of the epithelial barrier and eventual development of benign vocal fold lesions (e.g., nodules, polyps).
- Vocal folds are vulnerable to several significant biomechanical stresses (e.g., impact, longitudinal, shear) during vibration.
- Because lesions frequently occur at the middle one-third portion of vocal folds, impact stress may be greatest in this region.

Our laboratory has developed a magnetic resonance imaging (MRI) model to allow for the investigation of phonotrauma. This model provides a more accurate computational model of vocal fold vibration based on precise phonatory parameters (e.g., vocal intensity, airflow).

Overarching goal of research program: To quantify biomechanical stresses during phonotrauma and validate observations of molecular and tissue structure.

STUDY PURPOSE

- Magnetic resonance (MR) imaging has proven useful in generating high-quality images of the larynx and distinguishing soft tissues.
- Purpose: To obtain high-quality MR images of rabbit larynges to acquire details of morphology and layered structure of vocal folds.

METHODS

- Vanderbilt University Institutional Animal Care and Use Committee approved animal protocol.
- Male New Zealand white breeder rabbits weighing 3.2-4.0 kg. Anesthetized via intramuscular injections.
- Monitored general wellbeing and state of anesthesia.

IN VIVO Phonation Procedures

- Midline incision exposed larynx and trachea.
- Tracheostomy created to provide stable airway.
- 3.5-cm endotracheal tube inserted 2 cm below glottal opening. Continuous humidified airflow delivered through glottis at 144 cm/min heated at 37°C.
- Thyroid and cricoid cartilages sutured together.
- 3 trials of phonation elicited to obtain:
 - Acoustic measures (vocal intensity and fundamental frequency)
 - Aerodynamic measures
 - High-speed imaging

- Sutures between thyroid and cricoid cartilages remained in place to maintain adducted position.
- Animals were sacrificed and larynges were harvested.

Scanning Procedures

- Excised laryngeal specimens secured in 12 mL syringe with Fomblin 06:6 perfluoropolyether (Solvay Solexis, Thornford, NJ).
- Specimens placed in 38-mm inner diameter radionucleography coil.
- Scanning sequences performed using a Varian 9.4 Tesla horizontal bore imaging system (Varian Inc., Palo Alto, CA).
- Obtained multislice images in axial, coronal, and sagittal imaging planes.
- Data reconstructed using Matlab 2012a (Mathworks Inc., Natick, MA) using inverse Fourier transform.

RESULTS

- MR Scan 1: Fixed tissue using magnetization T2-weighted scanning (11 hours)
 - Overall resolution of 80 microns.
 - Evidence of contrast between structures, although minimal.
 - Substantial tissue deformation after specimen fixation with approximately 0.5 mm glottal gap.

- MR Scan 2: Fixed tissue using T1-weighted scanning (13 hours)
 - Smoother contour of vocal fold edges and improved representation of laryngeal shape.
 - Less defined contrast between larynx proper vs. vocalis muscle.
 - Large improvement in resolution of 55 microns.

- MR Scan 3: Fresh tissue using T2-weighted scanning (3 hours)
 - Less effective resolution of 110 microns.
 - Less contrast between structures.
 - Better preservation of the natural geometry of the laryngeal structures.

- MR Scan 4: Fresh tissue using magnetization T2-weighted scanning (2.5 hours)
 - Resolution of 125 microns.
 - Excellent contrast and pronounced distinction between lamina propria vs. vocalis muscle.

- MR Scan 5: Fresh tissue using magnetization T2-weighted scanning (12 hours)
 - Continued excellent contrast.
 - Substantial improvement in image resolution of 67 microns.
 - Minimal appreciable tissue deformation.

- MR Scan 6: Fixed tissue using magnetization T2-weighted scanning (12 hours)
 - Substantial improvement in image resolution of 67 microns.
 - Less appreciable contrast as compared to Scan 6.
 - Slight tissue deformation after formalin fixation with mild glottal gap.

CONCLUSIONS

- Overall Image Resolution
 - Best resolution (55 microns) acquired using faster relaxation time with a T1-weighted scanning sequence (MR scan 2).

- Preservation of Tissue Geometry
 - Freshly excised tissue resulted in minimal tissue deformation.

BEST MR Scan

- Of six MR scans, best scanning sequence was a special magnetization T2-weighted scan with fresh laryngeal tissue (MR scan & Figure 3).
- Most ideal balance between overall resolution, contrast, and minimal tissue deformation.

STUDY QUESTIONS

- How do changes in imaging parameters affect overall resolution?
- What is the impact of tissue temperature on image quality?

FUNDING

This research was supported by an NIH grant R01 DC 011338-61 from the National Institute of Deafness and Other Communication Disorders. (NIDCD).

REFERENCES