Intermittent Claudication

Frank Stegall, PGY-2
2/15/12
History

- Claudius, Roman emperor (41-54 AD) was said to walk with a limp.

- Bouley (1831) in Paris – vet who first described IC; identified aneurysmal & chronically thrombosed femoral a. in horse with progressive limping.

- Charcot (1858) – first to describe in humans
 - Vasospasm vs. insufficiency.
History (cont.)

- **1960s** – Debakey, Haemometakinesia; “borrowing-lending phenomenon”
 - Shunting based on vasodil. metabolites prod by exercise
 - Vicious cycle causes less blood capillaries prox. to occlusion

- **1970s** – Dormandy and Hess, Viscosity and Poiseuille’s Law
 - PAD pts with higher blood viscosity than age-matched controls
 - Hematocrit, plasma fibrinogen, and blood cell deformability
 - Pentoxifyline
 - Decreases whole blood viscosity (dec. fibrinogen levels, inc. RBC flexibility, etc.)
 - Efficacy prob overestimated
Case Presentation

• 64 yoM presents with complaints of pain with walking...

• HPI:
 – Distance to onset of symptoms / cessation of activity
 – Relief with rest?
 – Consistent vs. occasionally
 – Description of pain? crampy, dull, wrenching, etc.
 – Location of pain – gives idea of location of occlusive disease
 – Associated symptoms? chest pain, DOE, etc.
Case Presentation

- **PMH:**
 - CAD
 - HTN
 - COPD
 - DM II
 - CKD

- **PSH:**
 - Inguinal Hernia x2
 - L2 Laminectomy
 - PCI x1 in ‘09

- **FH:**
 - Mother with DM II and HTN
 - Father died of MI at age of 61
 - Brother with HTN

- **SH:**
 - 1-2 beers per day
 - 80 pack yrs. (2ppd)
PE

- T 37.0, P 82, R 16, BP 148/93, O2 94% (RA)
- Gen: Thin, appears older than stated age
- HEENT: normal
- CV: normal
- Pulm: normal
- Abd: normal, no pulsatile masses
- Ext: muscle wasting, thinning skin, thickened nails, hair loss in extremities
- Vascular: palpable radials, carotids, and femorals, no palpable popliteals, DP or PTs; monophasic DP and PT signals bilaterally
Additional Studies

- **ABI**
 - Ratio of BP in legs to BP in arms
 \[ABPI_{Leg} = \frac{P_{Leg}}{P_{Arm}} \]
 - Can be performed at rest or with exercise induction

- **Interpretation?**
 - 0.9 – 1.25: Normal
 - > 1.3: non-compressible vessels (DM, CKD)
 - 0.4 – 0.9: mild/moderate PVD
 - < 0.4: severe PVD
Additional Studies

- TBI – used for pts with non-compressible vessels
 - Interpretation:
 - 0.65: normal
 - 0.3-0.6: claudication in extremity
 - < 0.3: poor healing potential

- Exercise ABI – used for patients with claudication symptoms but normal ABIs at rest
 - Interpretation: essentially the same as resting ABIs

- CTA, MRI/MRA, etc.
Risk Factors for PVD

- Essentially same for atherosclerotic dz in rest of the body (coronaries, carotids, etc.)
 - Hypertension
 - Hyperlipidemia
 - Diabetes
 - Tobacco abuse
 - Male sex

- Risk for cardiovascular mortality & limb loss:
 - Annual risk?
 - 5% and 1% respectively
 - Improvement/stability of symptoms with non-operative measures?
 - 50%
 - Will progress to needing an operation within 5 years of diagnosis?
 - 20-30%
Non-operative management

- Optimization of modifiable risk factor profile:
 - Smoking cessation
 - Control of DM and BP
 - ASA and statin therapy

- Exercise regimen:
 - Increases muscle’s ability to adapt to anaerobic metabolism and overall increase in mitochondria
 - Walking is preferred mode of exercise
 - 3x per week
 - At least 30 minutes per session
 - Near-maximal claudication pain is indication for stopping
 - Continue regimen for 6 months
Operative Management

• Indications for operative intervention:
 – Disabling / Lifestyle Limiting Claudication
 – Limb-threatening Ischemia
 • Rest pain or Tissue ulceration

• Arteriography - Gold standard
 – Allows for simultaneous diagnosis & intervention
 – Limits exposure to contrast dye
 – MAC sedation vs. general anesthesia
 – Address inflow issues even if more distal bypass indicated
Percutaneous Angioplasty

- Gen more indicated for more prox. aortoiliac segments rather than distal tibioperoneal dz.
- Most useful for short-segment occlusions or multi-segmental dz,
 - especially if large distance between lesions
- Can be used alone or in conjunction with stent deployment.
Bypasses

- Aorto-Bifemoral Bypass
- Aorto-Iliac Bypass
- Femoral-Femoral Bypass
- Extra-anatomic Bypass (Axillofemoral, etc.)
- Femoral-Popliteal Bypass
- Synthetic vs. Autologous vein conduits based on bypass location, length, and availability of suitable native conduits.
Non-Atherosclerotic Claudication

- Congenital – metabolic
 - Ehlers-Danlos Syn
 - Pseudoxanthoma Elasticum
- Congenital – anatomic
 - Popliteal Entrapment Syn
 - Persistent Sciatic Artery
 - Abdominal Aortic Coarctation
 - Cystic adventitial Dz
- Behcet’s
- Radiation Arteritis
- Ergot Intoxication
- Neurogenic Claudication
Non-Atherosclerotic Claudication

- **Ehlers-Danlos Syn**
 - 9 types; biochemical defects leading to disorder of collagen synthesis
 - Present with spontaneous rupture or arteries, aneurysms, etc. – friable arteries
 - Avoid arteriogram; high operative M&M

- **Popliteal A. Entrapment Syn**
 - Congenital anomaly in popliteal fossa resulting in arterial compression or occlusion (65% have popliteal a. medial to medial head of gastroc)
 - Dx with dynamic duplex or arteriogram
 - Operate early to avoid occlusion or embolization; divide entrapping structure
Popliteal Entrapment Syndrome Variants

Type I
- Popliteal Artery
- Popliteal Vein
- Medial Head of the Gastrocnemius

Type II
- Popliteal Artery
- Popliteal Vein
- Medial Head of the Gastrocnemius

Type III
- Popliteal Artery
- Accessory slip of the Gastrocnemius
- Medial Head of the Gastrocnemius

Type IV
- Compressed Popliteal Artery
- Popliteus Muscle
Non-Atherosclerotic C.

• Cystic Adventitial Dz
 – Intramural cyst b/w media and adventitia
 – Intermittent claudication exacerbated by knee flexion
 – “Scimitar sign” on arteriogram

• Radiation Arteritis
 – Radiation to pelvic or LE structures; results in endothelial injury, going to fibrosis of adventitia > media > intima, progressing on to occlusion

• Neurogenic Claudication
 – Intrinsic process vs. extrinsic spinal cord compression
 – See pain, paresthesias, and/or weakness, usu in dermatomal distribution
 – Usu have relief with spinal flexion or recumbancy
 – Tx. conservative vs. surgical decompression