Heart Failure
Brian Widmar PhD, RN, ACNP-BC
Assistant Professor, Nursing and Anesthesiology, Critical Care
Vanderbilt University School of Nursing
Vanderbilt University Medical Center

Objectives
- Review the trajectory of heart failure as a clinical syndrome
- Describe the methods of classification of heart failure
- Describe current recommendations for goal-directed medical therapy (GDMT) across a continuum

Definitions
- Complex clinical syndrome that can develop from any cardiac disorder that impairs the ability of the ventricle to either fill properly or eject optimally.
 - The heart cannot pump enough blood to meet the metabolic demands of the body
 - Syndrome: HF is manifested and recognized by combinations of “hallmark” symptoms/signs

Presentations
- Dyspnea and fatigue
 - Impacts exercise and activity intolerance
- Extracellular fluid retention
 - Causes peripheral edema and pulmonary congestion
 - Impact on sense of well-being and quality of life

Causes
- Clinical syndrome with multiple possible etiologies.
- Regardless of the cause – there is a typical pathological remodeling that occurs and over time the remodeling/compensatory changes lead to
 - Progressive cardiac enlargement
 - Decline in cardiac function
 - Neurohormonal model of HF (TBDL)
Classifications and (more) terminology

- Variability in documentation of HF treatment plans, new billing requirements, etc.
- Different classifications are used to best describe patient presentation, acuity, subjective/objective findings.
 - Acute or chronic? Systolic or diastolic HF? Right or left-sided HF? Disease progression? Heart Failure symptoms?

Acute vs. Chronic

- Acute decompensated heart failure
 - G: improvement of sx, hemodynamics, volume status, ↓injury to heart/kidneys, initiating life-saving therapies
- Chronic heart failure
 - G: reduction of mortality, improvement of sx, QOL, ↓hospital admissions s/t ADHF.
 - Difference relates to patient presentation and hemodynamic stability – treatment goals reflect that

Right vs. Left Sided HF

<table>
<thead>
<tr>
<th>Right Sided Failure</th>
<th>Left Sided Forward Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased pulmonary perfusion</td>
<td>Decreased pulmonary perfusion</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>Dyspnea</td>
</tr>
<tr>
<td>Hepatic</td>
<td>Hepatic</td>
</tr>
<tr>
<td>Cyanosis</td>
<td>Cyanosis</td>
</tr>
<tr>
<td>Decreased diuretic</td>
<td>Decreased diuretic</td>
</tr>
<tr>
<td>- Edema, edema, oozing, oozing</td>
<td></td>
</tr>
<tr>
<td>- Shortness of breath</td>
<td></td>
</tr>
<tr>
<td>- Cough, cough, cough</td>
<td></td>
</tr>
<tr>
<td>- Crackles</td>
<td></td>
</tr>
<tr>
<td>- Orthopnea</td>
<td></td>
</tr>
<tr>
<td>- Tachycardia</td>
<td></td>
</tr>
<tr>
<td>- Crackles</td>
<td></td>
</tr>
<tr>
<td>- Orthopnea</td>
<td></td>
</tr>
<tr>
<td>- Tachycardia</td>
<td></td>
</tr>
</tbody>
</table>

AHA/ACC Heart Failure Staging

The American Heart Association/American College of Cardiology staging system classifies heart failure as a progressive disorder.
Left ventricular dysfunction begins with an initial insult to the myocardium, and even without any further insults, LV dysfunction continues to progress.

NYHA Functional Classification for Heart Failure

- Most commonly used system to assess functional capacity.
- Rating scale – so some variability in classification.
- Based upon patient report of heart failure symptoms with varying degrees of activity.
- Patients can move between classes.
- Other tests: 6MWT, maximal exercise testing, and peak O_2 consumption.

Killip Classification

- Originated from a study in 1967 in a CCU unit in the US
- Post-MI patients were evaluated for risk of death 30 days after the coronary event based upon hemodynamics and signs/symptoms of heart failure/shock at initial presentation.
- You might find the picture below familiar.
Systolic vs. Diastolic HF

- Systolic or diastolic dysfunction
- Systolic dysfunction
 - Heart failure with reduced EF
 - Abnormality of ventricular emptying due to impaired contractility or greatly excessive afterload
- Diastolic dysfunction
 - Heart failure with preserved EF
 - Abnormality of ventricular relaxation during diastole/ventricular filling

New Names for Systolic and Diastolic Dysfunction

- New terminology from the AHA/ACC Guidelines for 2013
- HFrEF (HF with reduced ejection fraction)
 - Replaces systolic dysfunction/HF
 - EF < 35-40%
- HFpEF (HF with preserved ejection fraction)
 - Replaces diastolic dysfunction/HF
 - EF > 50%
- Learn the new names, but you’ll still hear the old names thrown around.

Systolic Dysfunction: HFrEF

- The affected ventricle has a ↓ capacity to eject blood due to impaired myocardial contraction or pressure overload.
- Loss of contractility from myocyte destruction, abnormal function or fibrosis
- Often the LV wall thins and the cavity dilates – causing an eccentric hypertrophy.
- EF < 40% defines systolic dysfunction
- SD is found in 2/3 of patients with HF, and they have low cardiac output.

Diastolic Dysfunction: HFpEF

- ↓ diastolic relaxation or ↑ stiffness of ventricular wall.
- Ventricular muscle thickens (concentric hypertrophy).
- Cavity size normal, or may become smaller
- Ejection isn’t impaired – ventricular relaxation and filling is.
- Associated with chronic HTN and LVH
- Symptoms often seen with exertion when HR is ↑
- 3 criteria for dx:
 1. Signs/symptoms of HF
 2. Normal or only slightly ↓ EF
 3. Increased diastolic filling pressure and abnormal relaxation of the LV

Neurohormonal Responses in HF

- Series of natural compensatory mechanisms that occur to help the body adjust to ↓ CO and to help preserve BP needed to perfuse vital organs
- Initially they help. Over time, they lead to clinical deterioration.
- SNS stimulation, activation of the RAAS
- ↑ levels of endothelin, vasopressin, and cytokines

Neurohormonal Responses

- Sympathetic Nervous System Stimulation
- Renin-Angiotensin-Aldosterone System
- Vasopressin and Endothelin
- Inflammatory Response
- Positive Neurohormonal Responses
 - Atrial and brain natriuretic peptides (ANP, BNP)
- Left ventricular remodeling
Patient Evaluation

- Assess patient stability
- Patient History
 - Risk factors and possible etiologies for HF
 - Functional status
 - Volume status
 - How can you assess patient volume status?

Management

AHA/ACC Stages of Heart Failure (Crawford, 2009)

- **Stage A**: High risk for developing HF
 - No identifiable structural or functional abnormalities
 - No signs or symptoms of HF

- **Stage B**: Presence of structural heart disease strongly associated with development of HF
 - No signs or symptoms of HF
 - Advanced structural heart disease
 - Specialized interventions required
 - Advanced symptoms of HF at rest, chronic renal insufficiency

- **Stage C**: Part or present symptoms of HF associated with underlying structural heart disease

- **Stage D**: Advanced structural heart disease
 - No identified structural or functional abnormalities
 - No signs or symptoms of HF
 - Specialized interventions required

Treatment Goals

- **GOALS**: Treat HTN, quit smoking, treat dyslipidemia, regular exercise, discourage ETOH, discourage illegal drug use, control metabolic syndrome

- **THERAPY**: ACEi, ARB, or BB in appropriate patients

- **GOALS**: Measures under Stages A and B; Dietary salt restrictions
 - **THERAPY**: Diuretics (fluid retention); ACEi, BB
 - In selected patients: aldosterone antagonist, ARB, digitalis, nitrates/hydralazine

- **GOALS**: Measures under Stages A, B, and C
 - **THERAPY**: In selected patients: aldosterone antagonist, ARB, digitalis, nitrates/hydralazine

- **GOALS**: Measures under Stages A, B, and C
 - **THERAPY**: Compassionate, end-of-life care, hospice

- **GOALS**: Measures under Stages A, B, and C
 - **THERAPY**: Intravenous medications, hospice

- **GOALS**: Measures under Stages A, B, and C
 - **THERAPY**: Intravenous medications, hospice

Case 1

- JW is a 48 year old woman with a hx of HTN, HLD and obesity who presents to clinic for yearly evaluation
 - PMH: HTN, obesity; FX: Mother – MI, CHF; Father – DM, HTN
 - SH: tobacco use

 - What are our goals? What drug therapy might be indicated?
Stage A

- High risk for heart disease
 - Primary prevention focus
 - Heart healthy lifestyle, prevention of coronary disease and LV structural abnormalities
 - Drugs: ACEi or ARB as appropriate (vascular disease or DM); statins as appropriate
 - Goals for tx of HTN and dyslipidemia*
 - Treatment of other disorders that inc. risk for HF
 - Obesity, DM, atrial fibrillation, cardiotoxics

Case 2

- MS is a 62 year old man with PMH of HTN, HLD, MI, bicuspid aortic valve who presents to clinic for follow-up.
 - PMH: HTN, HLD, MI (2012), mild AS (bicuspid AV) EF normal
 - What are our goals for therapy?
 - Drug choices?

Case 3

- JS is a 59 year old man with hx of MI, HTN, DM who presents to clinic with c/o palpitations and exertional dyspnea of 1 day duration.
 - PMH: MI (2013), HTN, DM
 - PE: HR irreg rate/rhythm, BBS = w/ scattered crackles in posterior bases, 2+ pretibial edema, Pulses 3+ equal bilaterally
 - VS: HR 122 (AF per 12-lead, no ST changes), BP 144/97, RR 18, T 98.8F
 - Goals? Strategy for tx? Treatment choices?
Stage C

• Includes recommendations for stages A/B
• Includes known SHD and HF s/sx
• Further divided into
 – HF with preserved EF
 – HF with reduced EF

HFpEF

• Goals
 – Control symptoms, improve QOL, prevent hospitalization and mortality
• Identify comorbidities
• Treatment
 – Diuresis to relieve congestion symptoms
 – Follow guidelines for management of identified comorbidities

HFrEF

• Goals
 – Control symptoms, prevent hospitalization and mortality, and patient education
• Drugs for routine use
 – Diuretics, ACEi/ARB, BB, aldosterone antagonists
• Drugs for selected use
 – Hydralazine/nitrates; ACEi/ARB; digitalis
• Other considerations
 – CRT, ICD, revascularization/valve replacement

Diuretics

• Class I rec’s for evidence (or hx of) fluid retention to improve symptoms
 – Balance to dose appropriately to achieve target effect without dehydration, AKI, etc.
 – Loop diuretics most common
 • Bumetanide/torsemide – increased oral bioavailability
 • Na+ restrictive diet
 • Electrolyte monitoring/replacement
 • Drug tweakage (adding thiazide, reducing doses, etc.)

ACE Inhibitors

• HFrEF and current/prior symptoms
• Watch for SBP < 80, creat > 3, bilat RAS, or K+ > 5.0
• Dose low and increase as tolerated
• Watch renal function and K+ levels
 – Angiotensin suppression/kinin production → cough experienced by 20% of patients
 – Rash and taste disturbances are also reported
Angiotensin Receptor Blockers

- Class I rec’s for use if intolerant to ACEi
 - Effective hemodynamic/neurohormonal/clinical effects. Reasonable alternative to ACEi.
- Small risk of angioedema in patients who react to ACEi
- Class III rec’s – warn of potential harm if combined use of ACEi, ARB and aldosterone antagonists in HFrEF

Beta Blockers

- Should be initiated as soon as HFrEF is diagnosed in all stable patients without contraindications
 - Metoprolol succinate; carvedilol; bisoprolol
 - Abrupt cessation should be avoided
 - Adverse rx: fluid retention/HF; fatigue; bradycardia; heart block; hypotension
 - Worsening HF can usually be managed by titrating other drugs so BB therapy can be continued

Aldosterone Antagonists

- HFrEF with NYHA Class II to IV with EF ≤ 35%
- NYHA II with prior CV hospitalization
- Following acute MI in patients with EF < 40%
 - Symptoms of HF or history of DM
- Watch renal fx and electrolytes
 - Creatinine < 2.5 (men); 2.0 (women)
 - Potassium < 5.0
 - Serial monitoring of these required, especially if ACEi/ARB is used

Hydralazine/Nitrates

- Addition of combination for African American patients with NYHA III-IV HFrEF on GDMT with ACEi/ARB
 - Research shows additional morbidity/mortality benefit
- IIa recommendations in HFrEF pts who cannot tolerate ACEi/ARB
 - Additional morbidity/mortality benefit

Digoxin

- IIa recommendations include use in HFrEF to decrease hospitalizations for HF.
 - Persistent symptoms of HF during GDMT
 - Added to initial therapy in patients with severe sx who have not yet responded to GDMT
 - Latest research suggests increased mortality when used in patients with newly diagnosed systolic HF
 - Loading doses not typically required. Low dosing recommended in > 70 yo, impaired renal function or low lean body mass

Anticoagulants

- Long-term anticoagulation in patients with chronic HF with permanent/persistent/paroxysmal AF and an additional risk factor of cardioembolic stroke
 - Age > 75, Hx HTN, DM, previous stroke, or TIA
 - CHA2DS2-VASc score
 - Reasonable tx without additional risk factors
 - Not beneficial in absence of a-fib
Strategies for Achieving Optimal GDMT

- Up-titrate in small increments, see patients/monitor lab results more frequently, monitor vitals closely before/during titration, alternate adjustments of different medication classes (ARB/ACEi; BB); monitor renal fx/electrolytes
- Reassure patients of transient med-related sx
- Discourage sudden med cessation; review doses of all medications when adjusting drug doses; consider temporary adjustments during noncardiac issues
- Patient/family education about GDMT

Device Therapy in HFpEF

- HFpEF – high risk for SCD due to ventricular arrhythmias. Current guidelines coordinate previously conflicting recommendations
- Primary prevention: nonischemic dilated CM or IHD at least 40 days after MI with EF of 35%; NYHA II or III receiving GDMT, expected to live > 1 year
- Special CRT recommendations*
Stage D

- Advanced HF with refractory symptoms
 - Repeat hospitalizations, progressive deterioration in renal fx, intolerance to GDMT, frequent ICD shocks, serum Na+ level < 133, worsening functional status (inability to perform ADLs), escalation of diuretics to high dose or need for addition of thiazide, signs of cardiac cachexia
 - Explore etiologies of worsening symptoms
 - Evaluate patient adherence

- Specialized treatment strategies
 - MCSD, procedures to remove fluid (aquapheresis [Iib], SCUF/CRRT), continuous IV inotropes, transplantation
 - Palliative care/hospice
 - Consider including palliative care early in any treatment plan at this point is important – discuss goals of care with patient and family

Hospitalized Patients with HF

- Specific subgroups based upon precipitant event
 - Accelerated HTN, acute cardiac ischemia, ADHF, shock, acute right-sided HF, decompensation after surgical procedures
 - Recommendations focus on investigation into the contributing causes of the decompensation that led to admission

- Classify patient with congestion or perfusion issue (think Killip table)
 - Warm-Wet: diuretics/vasodilators
 - Cool-Dry: Inotropic support
 - Cool-Wet: combination of inotropes/vasodilators/diuretics

- Use of BNP recommended in evaluation of acute HF and to r/o other dx as causes of symptoms

Transitions and Coordination of Care

- Big emphasis in new guidelines due to potential for fragmentation of care during a very fragile time
- Multidisciplinary care team approach essential
 - Evidence-based treatment plan with phone follow-up 3 days s/p discharge; visit within 1 week
 - Continued assessment of volume and end-organ lab indices
 - Palliative care; home health; rehabilitation
Other Considerations

• Guidelines also include nonpharmacological treatment considerations
 – Social support, sodium restriction, treatment of OSA, weight loss for obesity, and activity/rehabilitation
 – Surgical, transcatheter and percutaneous therapies are also discussed

Final Points

• Increasing number of patients living with heart disease
• Increased complexity of patient presentations
• Guidelines present HF management across a continuum and levels of care
• Adherence to GDMT essential to reduction of mortality and increase in quality of life

References

Thank you!