Epilepsy Surgery: Indications and Outcomes

Peter Konrad, MD PhD
Functional Neurosurgery
Vanderbilt University
Epilepsy Surgery

- What is Epilepsy?
- Role of Epilepsy Surgery
- Pre-operative Evaluation
- Surgical Procedures
- Future Strategies
EEG: Seizure
EEG: Seizure Initiation
EEG: Seizure Initiation
Definitions

• Seizure:
 the clinical manifestation of an abnormal and excessive excitation of a population of cortical neurons

• Epilepsy:
 a tendency toward recurrent seizures unprovoked by systemic or neurologic insults
Incidence of Seizures and Epilepsy

• Seizures
 – Approximately 9% of the population will have a seizure in their lifetime.
 – About 5% will have febrile convulsions in early childhood.
 – The great majority of seizures do not lead to epilepsy.

• Epilepsy
 – Incidence: ~45/100,000 per year
 – Point prevalence: 0.5-1%
Surgical Treatment of Epilepsy

- 0.5 – 1% of the U.S.A. population (2.5M)
 - ~ 30-40% medically refractory (700K)
 - ¼ - ½ are potential surgical candidates (~ 100K)
- Only 2% of patients that would benefit from surgery receive operations

- Surgical Candidacy
 - Medically refractory
 - Anatomic epileptic focus

Epilepsy Surgery

• What is Epilepsy?
• Role of Epilepsy Surgery
• Pre-operative Evaluation
• Surgical Procedures
• Future Strategies
Indications for Epilepsy Surgery

• Clear anatomic etiology suggesting potential surgical cure.

• Persistent seizures despite optimal anti-epileptic drug (AED) trials.

• Severe seizure disorders needing palliative seizure reduction.
Medical Intractability

• Anti-seizure Drugs (AEDs) show declining utility with successive treatment failures.
 – Failure of 1 first-line AED, < 50% success with 2nd
 – Failure of 2 first-line AED, < 20% success with 3rd
 – Failure of 3 first-line AED, < 5% success with 4th

• Although newer medications may be better tolerated, their efficacy has not proven substantially superior.

Epilepsy Surgery

- What is Epilepsy?
- Role of Epilepsy Surgery
- Pre-operative Evaluation
- Surgical Procedures
- Future Strategies
Pre-operative Evaluation

• Goal: Define the anatomic epileptic focus.
• Studies:
 – Semiology
 – Video EEG study
 – MRI: to show lesion or sclerosis
 – PET: interictal hypometabolism
 – Neuro-psychological evaluation
 • Lateralizing, localizing and prognostic
 – Wada test
 • Lateralizes language and memory dominance
Pre-op Evaluation: Video EEG

- Patient’s undergo video EEG for an extended period.
- Medications are withheld.
- Seizures are recorded to determine point of origin.
Pre-op Evaluation: Imaging

- MRI scan may show regions of dysplasia, a benign tumor, or scarring of the hippocampus.

- PET scans show areas of decreased metabolism suggesting a focal brain abnormality.

- Other Imaging modalities may be used in specific circumstances.
Pre-op Evaluation: Wada Test

- In Wada test an anesthetic agent is infused to each brain hemisphere sequentially to evaluate the location of language and memory.
- Injection of the epileptogenic side without deficit predicts surgical safety.
Epilepsy Surgery

• What is Epilepsy?
• Role of Epilepsy Surgery
• Pre-operative Evaluation
• Surgical Procedures
• Future Strategies
Epilepsy Surgery Procedures

• Lesionectomy
• Temporal lobe epilepsy
• Non-temporal epilepsies
• Disconnection surgeries
• Vagal nerve stimulation
Lesionectomy

- Clear lesion associated with seizure type.
- Resection of lesion and peri-lesional tissue.
Temporal Lobe Epilepsy

- Most common intractable epilepsy syndrome
- 60-70% associated with Mesial Temporal Sclerosis
- Semiology – Complex partial seizures
 - Auras
 - Epigastric, nausea, palpitations
 - Early ipsilateral head version w/ contralateral dystonia
 - 97% predictive of lateralization
 - Late contralateral head version w/ contralateral dystonia and contralateral mouth deviation
 - 90% predictive of lateralization
Temporal Lobe Epilepsy

- **EEG findings**
 - Sharp waves in mesial structures without extratemporal activity

- **MRI**
 - Hippocampal atrophy
 - Seen on T1
 - Signal change
 - Seen on T2 or Flair

- **PET**
 - Interictal hypometabolism
Standard Anterior Temporal Lobectomy
Mesial Temporal Lobe Epilepsy

- Mesial Temporal Sclerosis

7. Figure from Blumcke, I, Beck H, Lie AA, Wiestler, OD. Epilepsy Res. 1999 Sep;36(2-3):205-23.
Standard Anterior Temporal Lobectomy

- Resected tissue
 - Antero-lateral temporal lobe
 - **LEFT** Superior (2-3 cm), middle and inferior (4-6 cm) temporal gyri
 - **RIGHT** 4-6 cm resection from tip
 - Mesial structures
 - Amygdala, hippocampus and parahippocampal gyrus

- Seizure control ranges from 60-80% seizure free

- At Vanderbilt, performed if dysplasia or lesion in lateral cortex.
Seizure Outcomes

Engel Classification

I. Free from disabling seizures
 A. Completely free
 B. Non-disabling simple partial only
 C. Some disabling after surgery, but non-disabling for >2 yrs
 D. Generalized w/ AEDs stopped

II. Rare disabling
 A. Initially free, but still rare
 B. Rare disabling seizures
 C. Occasional disabling since surgery, but rare for last 2 yrs

III. Worthwhile improvement

IV. No Worthwhile improvement

Selective Amydalo-hippocampectomy

Approach corridor
Transcortical Transventricular Technique

- **Incision**
 - Starting at zygoma
 - Curves posteriorly
 - Temporalis split

- **Craniotomy**
 - 2.5 - 3 cm diameter
 - Centered over middle temporal gyrus
Transcortical Transventricular Technique
Transcortical Transventricular Technique
Transcortical Transventricular Technique

- **Extent of resection**
 - Medial amygdala
 - Hippocampus
 - 3-3.5 cm
 - Post to cerebral peduncle
 - Parahippocampal gyrus
Seizure Outcomes

• Outcomes for selective AH vs. ATL
 – Equivalent regardless of surgery or approach
 • Wieser: >10yr follow-up transsylvian
 – 71% Engel I
 • Lutz: Randomized, prospective trial
 – Transcortical (77%); transsylvian (73%)
 – Subtemporal approach: 80% Engel I or II
 – Reduction in AEDs
 • 74% of Engel Class Ia patients stopped AEDs by post-op year 5

Non-temporal Epilepsy

- Seizures originating in other parts of the brain are more difficult to pinpoint and treat.
- Non-temporal epilepsies typically require placement of subdural or deep electrodes to pinpoint seizure activity.
- Once focus is identified a second surgery is performed to remove that brain area.
- Great care is taken to identify regions of “eloquent” cortex.
 - Mapping from subdural grids.
 - fMRI or Wada Testing
 - Awake procedures to map cortex
Non-temporal Epilepsy

- Epilepsy grid implantation.
Depth Electrodes

- Intraventricular electrode monitoring
Non-temporal Epilepsy

• Resection based on information from grid.
Functional Anatomy: Multiple Sub-pial Transection

- When seizure is located in motor or language cortex, excision is not possible.
- Fibers between neurons can be interrupted in the MST procedure.
Other Epilepsy Procedures:
Epilepsy Surgery Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Temporal</th>
<th>Extra-Temporal</th>
<th>Lesional</th>
<th>Hemispherectomy</th>
<th>Callosotomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seizure Free</td>
<td>68</td>
<td>45</td>
<td>66</td>
<td>45</td>
<td>8</td>
</tr>
<tr>
<td>Improved</td>
<td>23</td>
<td>35</td>
<td>22</td>
<td>35</td>
<td>61</td>
</tr>
<tr>
<td>Not-Improved</td>
<td>9</td>
<td>20</td>
<td>12</td>
<td>20</td>
<td>31</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

- Results expressed as % of total
Vagus Nerve Stimulation

- **Historical Data:**
 - 1980’s: Desynchronization of EEG by VNS in animals
 - 1990’s: Device concept and pilot testing
 - 1997: FDA approval for patients with medically refractory CPSz and generalized seizures

- **Selection Criteria:**
 - > 6 szrs / month
 - Medically refractory (appropriate neurologist evaluation)
 - EEG demonstrating non-focal epilepsy
Vagus Nerve Stimulation

- **Surgery:**
 - 2 hour outpatient surgery

- **Stimulation:**
 - Cycling: 30s on / 5 min off
 - Option of patient-triggered stimulation

- **Adverse effects** local, related to stimulus (hoarseness, throat discomfort, dyspnea)
Epilepsy Surgery

- What is Epilepsy?
- Role of Epilepsy Surgery
- Pre-operative Evaluation
- Surgical Procedures
- Future Strategies
Deep Brain Stimulation

• Outcomes:
 – 50% reduction in seizures
 – Anecdotal case reports of < 5 cases per report
 – Essentially similar results as VNS but no mood effects

• Disadvantages:
 – Not FDA approved
 – Targeting debated
 – Open Loop design
Deep Brain Stimulation

• Advantages:
 – More targeted control at seizure spread
 – Known surgical technique

• Disadvantages:
 – Not FDA approved
 – Targeting unclear
 – Open Loop design
Preemptive Brain Stimulation

- **Surgical Concepts:**
 - Focus of seizure activity is restricted
 - Localized detecting electrodes feed signals to control circuitry
 - HF Stim applied to region of ictal focus within 2 sec of seizure onset

Seizure Focus: Detection of electrical discharges

Processing signal: Electrical therapy Yes or No?

Stimulus delivered To area of interest Within 2 sec's
Preemptive Brain Stimulation

• Surgical Concepts:
 – Neuropace™ study
 – Electrodes implanted:
 • Cortical strip
 • DBS
 – Generator: embedded in cranial vault
 – Software loadable algorithms for detection and therapy
Preemptive Brain Stimulation

• Advantages:
 – Addresses non-resectable, focal seizure D/O
 – Allows much control of therapy
 – Open ended architecture

• Disadvantages:
 – Non-FDA approved, but IDE granted in 2003
 – Major surgery needed for implant
 – Outcomes unclear
Neurology
• Bassel Abou-Khalil, MD, Director
• Robert Macdonald, MD, Ph
• Amir Arain, MD
• Nabil Azar, MD
• Christine Dong, M.D.
• Martin Gallagher, MD, PhD
• Kevin Haas, MD, PhD
• Andre Lagrange, MD, PhD
• Michael McLean, MD, PhD
• Gregory Matthews, MD, PhD
• Pradumna Singh, MD

Pediatric Neurology
• Juliann Paolicchi, MD, Director
• Gregory Barnes, MD, PhD
• Kevin Ess, MD
• Eric Pina-Garza, MD

Neurosurgery
• Peter Konrad, MD, PhD
 Director
• Joseph Neimat, MD
• Matthew Pearson, MD

Neuropsychology
• Craig Roof, Ph.D

Epilepsy Coordinator
• Allyson Carroll