HIV, Dyslipidemia, and CVD Risk

Sergio Fazio, MD, PhD
Cornelius Vanderbilt Chair of Cardiovascular Medicine
Professor of Medicine, Pathology, Immunology and Microbiology
Chief, Section of CVD Preventio
Vanderbilt University Medical Center
Nashville, Tennessee
One Case

54-yo man with HIV, diabetes, HTN, and dyslipidemia
No CHD, no family history of CHD, no smoking
HIV: controlled on Atripla 600/200/300 and Isentress 400 mg twice a day
HTN: controlled on HCTZ/ACE-I
T2D: poorly controlled on metformin 1000 plus glipizide 4 (HbA1c 9.3%)
LDL 83 mg/dl, on pravastatin 40 mg
TG 1770 mg/dl on fenofibrate 160 and fish oil supplement 2 g
Also on aspirin 81 mg
One Case

Stress test normal, CAC zero
Amylase and lipase normal
AST 114, ALT 151

Dietary instructions
Omega 3 supplement to 4g
Metformin to 2000 mg
Glipizide to 10 mg

At 3-month follow up, patient has lost 10 pounds
TG 330 mg/dl (LDL 94 mg/dl)
HbA1c 6.3%
AST 60, ALT 75
Another Case

64-yo man with HIV, diabetes, CAD (stent in LAD 8 years prior), and dyslipidemia
HIV: controlled on Truvada 200/300 mg, Isentress 400 mg twice a day, Intelect 100 mg Tab 2 tablets twice a day for 120 days
T2D: poorly controlled on glipizide 5 (HbA1c 9.0%)
Lipids: LDL 97 mg/dl, TG 75 mg/dl, HDL 38 (rosuvastatin 10 mg)
AST 34, ALT 62
Another Case

Dietary instructions
Omega 3 supplement to 4g
Glipizide to 10 mg

At 3-month follow up, patient has lost 7 pounds
LDL 29 mg/dl
HbA1c 6.3%
AST 30, ALT 32
Another Case

Dietary instructions
Omega 3 supplement to 4g
Glipizide to 10 mg

At 3-month follow up, patient has lost 7 pounds
LDL 29 mg/dl
HbA1c 6.3%
AST 30, ALT 32

TG 260, HDL 26
CVD Risk Factors with HIV Infection

- Traditional risk factors
 - Age
 - Dyslipidemia
 - Hypertension
 - Higher smoking rates
 - Impaired glucose tolerance
 - Insulin resistance

- Nontraditional risk factors
 - Subcutaneous fat loss
 - Visceral fat gain
 - Inflammation, CRP increases
 - Direct effects of the virus on the vasculature, increased CIMT
 - Effects of ARV drugs, lipodystrophy

HIV and Dyslipidemia

- Untreated patients with HIV infection commonly show
 - Increased TC
 - Decreased LDL-C
 - Decreased HDL-C
 - Increased TG

- Patients treated with ARV medications commonly show
 - Increased TC
 - Increased LDL-C
 - Decreased HDL-C
 - Increased TG

HIV and CHD Risk

- Increased rates of CHD in HIV-infected patients on anti-retrovirals
 - HIV-positive patients in the Kaiser-Permanente cohort (N = 20,081) had significantly increased CHD risk (p<.001) over HIV-negative control group (N = 215,158)
 - DAD, a large, prospective, multicohort study (N = 23,468) showed association between ARV therapy and risk of MI

The highest prevalence of dyslipidemia was seen in regimens containing drugs from both the PI and NNRTI classes, suggesting a possible additive effect of combinations of drugs from these drug classes.

Dyslipidemia was most strongly correlated with current use of ARV regimens, rather than a history of previous drug regimens.

There was a strong association between elevated total cholesterol level and higher CD4+ cell counts, which was present within each treatment category (PI, NNRTI, NNRTI+PI) except the ARV-therapy-naïve group.

Abnormal Lipid Parameters in HIV Patients

- Abnormalities in lipid parameters can be due to
 - HIV
 - HIV Medications
 - Other Medications
 - Other Diseases
 - Other Factors
 - Genetic predisposition
Can Triglycerides Cause Atherosclerosis?

- Association between TG and CHD in populations is weaker than that between LDL and CHD
- Trials with TG-lowering drugs have not produced definitive evidence
- Severe hyperTG does not commonly cause CVD
- TG accumulation is not a hallmark of atherosclerosis
Foam-cell Formation: Cholesterol entry

Li and Glass. Nat Med 2002
Lipid Profile in Patients With Premature Coronary Artery Disease

Men

<table>
<thead>
<tr>
<th>Plasma Lipid Concentration (mg/dL)</th>
<th>Control</th>
<th>CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL-C</td>
<td>138</td>
<td>139</td>
</tr>
<tr>
<td>TG</td>
<td>141</td>
<td>177</td>
</tr>
<tr>
<td>HDL-C</td>
<td>45</td>
<td>35</td>
</tr>
</tbody>
</table>

Women

<table>
<thead>
<tr>
<th>Plasma Lipid Concentration (mg/dL)</th>
<th>Control</th>
<th>CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL-C</td>
<td>134</td>
<td>152</td>
</tr>
<tr>
<td>TG</td>
<td>110</td>
<td>219</td>
</tr>
<tr>
<td>HDL-C</td>
<td>57</td>
<td>47</td>
</tr>
</tbody>
</table>

P < 0.005 as compared with control.

†*P* < 0.05 as compared with control.

TG Levels and CHD Risk: Meta-analysis of 29 Studies

N=262,525.
*Individuals in top versus bottom third of usual log-TG values, adjusted for at least age, sex, smoking status, lipid concentrations, and (in most studies) blood pressure.
Kuopio Study: Metabolic Syndrome and Mortality

CVD Mortality

RR (95% CI), 3.55 (1.96-6.43)

All-Cause Mortality

RR (95% CI), 2.43 (1.64-3.61)

Follow-up, y

Follow-up, y

Metabolic Syndrome: Yes

Metabolic Syndrome: No

RR = relative risk.

CV Risk Assessment

Advanced lipid testing
hsCRP and Lp-PLA2
cIMT
CAC
Long-Term Prognosis Associated with Absolute Coronary Calcification and CAC Progression

n= 25,257

Budoff M and Raggi P, submitted for pubblication
Lifestyle Changes

Diet (calories, nutrients, alcohol, supplements)
Weight management
Exercise
Smoking cessation
Central Adiposity in HIV is Associated with Increased 5-year Mortality

<table>
<thead>
<tr>
<th>Tertile</th>
<th>VAT:</th>
<th>Odds ratio (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terile 1</td>
<td>VAT:</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Tertile 2</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Tertile 3</td>
<td></td>
<td>10.00</td>
<td></td>
</tr>
</tbody>
</table>

Reference:
- Tertile 1: 1.77 (1.03, 3.03) P = 0.039
- Tertile 2: 2.12 (1.13, 3.98) P = 0.019
Effects of a 6-month Lifestyle Modification Program in HIV Pts

Lipid-lowering Management Strategies

- Lifestyle changes
- Statins (plus ezetimibe)
- Fibrates
- Omega 3 supplementation
- Niacin
Benefits of Intensive LDL-C Lowering

Coadministration of Statins with Protease Inhibitors

<table>
<thead>
<tr>
<th>Statins</th>
<th>Protease Inhibitors</th>
<th>Drug-Drug Interaction</th>
<th>Dosing Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosuvastatin</td>
<td>Darunavir; Saquinavir, Fosamprenavir, Lopinavir, Tipranavir Atazanavir Atazanavir + Ritonavir Lopinavir + Ritonavir</td>
<td>Possible increase in rosuvastatin concentration Inc. Rosuv. AUC 213% & Cmax by 6-fold Inc. Rosuv. AUC 3-fold & Cmax 7-fold Inc. Rosuv. AUC 2-fold & Cmax 5-fold</td>
<td>Start 5 mg; Use lowest possible dose Limit dose to 10 mg Limit dose to 10 mg Limit dose to 10 mg</td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>All Protease Inhibitors Nelfinavir Fosamprenavir+/-Ritonavir Darunavir or Saquinvir + Tipranavir+ Ritonavir Telaprevir</td>
<td>Increase atorvastatin concentration Ritonavir</td>
<td>Use lowest possible dose Limit dose to 40 mg Limit dose to 20mg Limit dose to 20 mg AVOID AVOID</td>
</tr>
<tr>
<td>Pravastatin</td>
<td>Darunavir Lopinavir+-/Ritonavir Saquinavir Darunavir/Ritonavir</td>
<td>Increases prava-concentration Increases pravastatin -concentration May decrease prava-concentration (~50%) Inc. pravastatin AUC 81% & Cmax 63%</td>
<td>Use lowest possible dose No dose adjustment (FDA) No dose adjustment (FDA)</td>
</tr>
<tr>
<td>Pitavastatin</td>
<td>Atazanavir Atazanavir+ Ritonavir Darunavir+Ritanavir Lopinavir+Ritonavir</td>
<td>31% increase in pitavastatin AUC 20-26% decrease in pitavastatin AUC 20-26% decrease in pitavastatin AUC</td>
<td>No dosage adjustments.</td>
</tr>
<tr>
<td>Simvastatin or Lovastatin</td>
<td>All Protease Inhibitors inc. Boceprevir or Telaprevir</td>
<td>Significant increases in simvastatin or lovastatin concentrations</td>
<td>ALL Contraindicated</td>
</tr>
</tbody>
</table>

Pitavastatin and Lopinavir/Ritonavir PK Study

Pitavastatin Plasma PK Profile

- Mean plasma Concentration vs time profile of pitavastatin administered and measured alone vs coadministered with lopinavir/ritonavir
- Lopinavir/Ritonavir 800mg/200mg, Pitavastatin 4mg
- Pharmacokinetics data obtained from 23 healthy subjects that completed the study
- ng/mL=nanograms per milliliter; PK=pharmacokinetic

Change in AUC \downarrow 20%
Change in Cmax \downarrow 4%

LIV-MT-0372, PS78181.
Pitavastatin and Lopinavir/Ritonavir PK Study

Lopinavir Plasma PK Profile

- Mean plasma Concentration vs time profile of pitavastatin administered and measured alone vs coadministered with lopinavir/ritonavir
- Lopinavir/Ritonavir 800mg/200mg, Pitavastatin 4mg
- Pharmacokinetics data obtained from 23 healthy subjects that completed the study
- ng/mL=nanograms per milliliter; PK=pharmacokinetic

LIV-MT-0372, PS78181

Change in AUC$_{0-T}$ ↓ 9%
Change in Cmax ↓ 7%
• Mean plasma Concentration vs time profile of pitavastatin administered and measured alone vs coadministered with lopinavir/ritonavir
• Lopinavir/Ritonavir 800mg/200mg, Pitavastatin 4mg
• Pharmacokinetics data obtained from 23 healthy subjects that completed the study
• ng/mL=nanograms per milliliter; PK=pharmacokinetic

Change in AUC$_{0-T}$ ↓ 11%
Change in Cmax ↓ 11%

LIV-MT-0372, PS78181
Pitavastatin and Darunavir/Ritonavir PK Study
Pitavastatin Plasma PK Profile

- Mean plasma Concentration vs time profile of pitavastatin administered and measured alone vs coadministered with darunavir/ritonavir
- Darunavir/Ritonavir 800mg/100mg, Pitavastatin 4mg
- Pharmacokinetics data obtained from 27 healthy subjects that completed the study
- ng/mL=nanograms per milliliter; PK=pharmacokinetic

Data on file:04/26/2012:
Pitavastatin and Darunavir/Ritonavir PK Study
Darunavir Plasma PK Profile

Mean plasma Concentration vs time profile of pitavastatin administered and measured alone vs coadministered with darunavir/ritonavir
- Darunavir/Ritonavir 800mg/100mg, Pitavastatin 4mg
- Pharmacokinetics data obtained from 27 healthy subjects that completed the study
- ng/mL=nanograms per milliliter; PK=pharmacokinetic

Data on file: 04/26/2012
Pitavastatin and Darunavir/Ritonavir PK Study
Ritonavir Plasma PK Profile

Change in AUC$_{0-T}$ ↑ 8%
Change in Cmax ↑ 2%

- Mean plasma Concentration vs time profile of pitavastatin administered and measured alone vs coadministered with darunavir/ritonavir
- Darunavir/Ritonavir 800mg/100mg, Pitavastatin 4mg
- Pharmacokinetics data obtained from 27 healthy subjects that completed the study
- ng/mL=nanograms per milliliter; PK=pharmacokinetic

Data on file: 04/26/2012:
Lipid-lowering Management Strategies: Fish Oils and Fibrates

♦ Fish oils
 • Known to decrease triglycerides in HIV-infected patients1
 • Well tolerated and have few side effects1
 • Cardiovascular benefit is unclear1

♦ Fibrates
 • Appear to have no pharmacologic interactions with ARVs1
 • Reduce triglycerides by 40\%-50\% in HIV-infected patients; are well tolerated1
 • Most clinical studies report that 1\%-40\% of patients achieved a target of TG ≤200 mg/dL1
 • Less effective than statins for reducing LDL-C2
 • Cardiovascular benefit is unclear1

\textbullet\ HIV=human immunodeficiency virus; ARVs=antiretrovirals; TG=triglyceride; LDL-C=low-density lipoprotein cholesterol

Lipid Changes on Atorvastatin in the TNT Study

PROVE IT-TIMI 22 Trial Subanalysis: Relationship Between LDL-C, TG, and CHD

Estimates of Death, MI, and Recurrent ACS Between 30 days and 2 years of Follow-Up

According to Achieved LDL-C <70 mg/dL

According to Achieved TG <150 mg/dL

19%

27%

HR: hazard ratio

Subanalysis of the PROVE IT-TIMI 22 study in 4162 patients hospitalized for ACS and randomized to atorvastatin 80 mg or pravastatin 40 mg, with follow-up through 2 years.
Fibrate Efficacy Overview: CHD Risk Reduced 35% in Patients with Dyslipidemia

Overview of fibrate efficacy in clinical trials

CHD events significantly reduced in patients with dyslipidemia

- Helsinki Heart Study, TG 204 mg/dl HDL-C <42 mg/dl; b The Veterans Affairs Cooperative Studies Program High Density Lipoprotein Cholesterol Intervention Trial, TG>180; c Bezafibrate Infarction Prevention, TG>200; d Fibrate Intervention and Event Lowering in Diabetes, TG>204; HDL-C<40; e Action to Control Cardiovascular Risk in Diabetes, TG>204; HDL-C<34.

Patient Subgroup – TG >150mg/dL and HDL <40mg/dL: JELIS

Effects of EPA on coronary artery disease in hypercholesterolemic patients with multiple risk factors: Sub-analysis of primary prevention cases from the Japan EPA Lipid Intervention Study (JELIS)

Fig. 3. Effects of EPA on the incidence of MCE for the high TG/low HDL-C group. Hazard ratio and P value adjusted for age, gender, smoking, diabetes, and hypertension. HR, hazard ratio; CI, confidence interval.

Lipid-lowering Management Strategies: Niacin

- Increases HDL-C
- Commonly causes flushing
- Can cause insulin resistance
- Affects glycemic control in patients with diabetes
- Should be used with caution in HIV patients who exhibit insulin resistance or lipodystrophy
- Short-term use of niacin has shown to improve endothelial function in HIV-infected patients with low HDL-C

• HDL-C=high-density lipoprotein cholesterol; HIV=human immunodeficiency virus
AIM HIGH: No Measurable Effects of Niacin Added to Simvastatin

- 3414 Subjects with CAD
- Simvastatin alone or with ezetimibe ± ER niacin
- On niacin TG 120 mg/dL, HDL 44 mg/dL, LDL 65 mg/dL
- Controls TG 152 mg/dL, HDL 38 mg/dL, LDL 67 mg/dL
- 282 subjects on niacin had primary endpoint (16.4%)
- 274 controls had primary endpoint (16.2%)

NEJM, 2011; 365: 2255-2267
AIM-HIGH—Results

1st Endpoint: CHD Death, nonfatal MI, ischemic stroke, high-risk ACS, hospitalization for coronary or cerebrovascular revascularization

HR 1.02, 95% CI 0.87, 1.21
Log-rank P value = 0.79

N at risk
Monotherapy: 1696, Combination Therapy: 1718

Time (years)
0 1 2 3 4

Cumulative % with Primary Outcome
0 10 20 30 40 50

Conclusions

- The dyslipidemia of HIV patients may have different causes and proper diagnosis will help management
- CV risk assessment as in other patient types
- Lifestyle changes (weight loss) very effective in adjusting glucose and TG/HDL levels
- Statins to be used according to FDA restrictions
- Fibrates, niacins, and omega 3 fats have not provided definitive evidence of CV benefits yet