Abstract

Compound-specific isotope analysis (CSIA) by isotope ratio mass spectrometry (IRMS) following on-line combustion (C) of compounds separated by gas chromatography (GC) is a relatively young analytical method. Due to its ability to measure isotope distribution at natural abundance level with great accuracy and high precision, GC–C–IRMS has increasingly become the method of choice in authenticity control of foodstuffs and determination of origin in archaeology, geochemistry, and environmental chemistry. In combination with stable isotope labelled compounds, GC–C–IRMS is also used more and more in biochemical and biomedical application as it offers a reliable and risk-free alternative to the use of radioactive tracers. The literature on these topics is reviewed from the advent of commercial GC–C–IRMS systems in 1990 up to the beginning of 1998. Demands on sample preparation and quality of GC separation for GC–C–IRMS are discussed also. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Reviews; Food analysis; Mass spectrometry; Isotope analysis; Environmental analysis; Geochemistry; Detection, GC

Contents

1. Introduction ......................................................................................................................... 352
2. Principles of IRMS and GC–C–IRMS ..................................................................................... 353
   2.1. IRMS ....................................................................................................................................... 353
   2.2. GC–C–IRMS .......................................................................................................................... 353
       2.2.1. Sample preparation ........................................................................................................... 355
       2.2.1.1. Derivatization .............................................................................................................. 356
       2.2.2. Isotopic calibration ........................................................................................................ 356
       2.2.3. HRcGC ............................................................................................................................ 357
3. High-precision CSIA of 13C isotopic abundance ........................................................................ 358
   3.1. GC–C–IRMS at natural abundance level .................................................................................. 358
       3.1.1. Authenticity ...................................................................................................................... 359
       3.1.1.1. Flavours and fragrances .............................................................................................. 359
       3.1.1.2. Wine, fruit juice and honey ............................................................................................ 360
       3.1.1.3. Vegetable oils ............................................................................................................. 361

*Fax: +44 1382 345514.
E-mail address: w.meieraugenstein@dundee.ac.uk (W. Meier-Augenstein)

0021-9673/99/$ – see front matter © 1999 Elsevier Science B.V. All rights reserved.
PII: S0021-9673(98)01057-7
1. Introduction

During the 14 years that followed the first publications reporting the coupling of gas chromatography (GC) to on-line combustion of GC separated compounds to yield CO₂ and N₂ for isotope ratio analysis by a single collector mass spectrometer [1,2], hardly any work was published that made use of this new technique. Drawing on this work, in 1984, Barrie et al. [3] coupled a dual collector mass spectrometer to a GC via an on-line combustion interface, thus permitting continuous recording of (m+1)/m isotope ratios by detecting two successive masses at the same time. Their instrument was the first genuine GC–combustion interfaced–isotope ratio mass spectrometry (GC–C–IRMS) system and produced isotope ratios that were an order of magnitude more precise than obtained from an optimised single collector instrument.

However, it was not until 1990 that GC–C–IRMS instruments became commercially available. Since then, GC–C–IRMS instrumentation has experienced several advances and its application has increased to such an extent that it “could almost be considered a conventional technique” [4].

Tom Brenna of Cornell University’s Division of Nutritional Sciences, once said “IRMS is probably the first form of analytical mass spectrometry” (see Ref. [166]). IRMS is certainly a very sensitive detector, able to yield highly precise measurements of isotope ratios with a standard deviation in the range of four to six significant figures. When coupled to a GC system, it enables the analyst to conduct highly precise compound-specific isotope analysis (CSIA), especially at natural isotopic abundance level. High-precision CSIA at natural abundance level can provide information on biogenetic relation and origin of a given organic compound. Compared with authentic reference data, subtle differences in the isotopic abundance of ²H, ¹³C, ¹⁵N, or ¹⁸O can thus help uncover adulteration of foodstuff or drug abuse in sports to name but a few.

There is also an increasing interest in the application of high-precision CSIA in tracer studies. One area of application is concerned with quantitative studies of biochemical processes such as assimilation/incorporation of nutrients, turnover rates of biologically important molecules, and quantitation of protein synthesis. The other area aims to improve detection limits of bio-organic molecules by using labelled precursor compounds at high enrichment levels.

In either case, high-resolution capillary gas chromatography (HRGC) is a prerequisite for high-precision CSIA by on-line IRMS. Peak overlap and peak distortion have a detrimental effect on both accuracy and precision of isotope ratio measurements. It is therefore not surprising that scientists working on high-precision CSIA by on-line IRMS invariably employ HRGC methods.

It is the aim of this article to provide a review over the current spectrum of applied GC–C–IRMS in conjunction with the HRGC aspects involved. To illustrate as to why the two are inextricably linked, the first section of this review will deal with the characteristics of IRMS and GC–C–IRMS.
2. Principles of IRMS and GC–C–IRMS

2.1. IRMS

In order to understand why HRcGC is quintessential for high precision CSIA one needs to appreciate exactly how IRMS works. In contrast to so-called organic mass spectrometers (MS) that yield structural information by scanning a mass range (typically over several hundred amu) for characteristic fragment ions, IRMS instruments achieve highly precise measurement of isotopic abundance at the expense of the flexibility of scanning MS.

For isotopic ratio measurement, the analyte must be converted into a simple gas, isotopically representative of the original sample, before entering the ion source of an IRMS. Continuous flow isotopic ratio measurements of $^2\text{H}/^1\text{H}$, $^{13}\text{N}/^{14}\text{N}$, $^{13}\text{C}/^{12}\text{C}$, $^{18}\text{O}/^{16}\text{O}$ and $^{34}\text{S}/^{32}\text{S}$ are performed on gases of $\text{H}_2$, $\text{N}_2$, $\text{CO}_2$, $\text{CO}$ and $\text{SO}_2$, respectively, with $^{13}\text{C}$ abundance measurements accounting for almost 70% of all gas isotope ratio analyses made. One also has to bear in mind that IRMS, in fact, determines the difference in isotope ratio with great precision and accuracy rather than the absolute isotope ratio. IRMS measurements yield the information of isotopic abundance of the analyte gas relative to the measured isotope ratio of a standard or reference gas. This is done to compensate for mass discriminating effects that may fluctuate with time and from instrument to instrument. In dual-inlet IRMS systems, sample gas and standard gas are introduced into two separate gas reservoirs (bellows) and a changeover valve array is used to toggle bellow effluents between the ion source and a waste line, thus maintaining constant viscous flow.

To achieve accurate and highly precise measurement of isotope ratios, obviously great care must be taken to ensure that no part of the analyte data is lost. In the case of $\text{CO}_2$, the data comprise three ion traces for the different isotopomers $^{12}\text{C}^{16}\text{O}_2$, $^{13}\text{C}^{16}\text{O}_2$ and $^{12}\text{C}^{18}\text{O}^{16}\text{O}$ with their corresponding masses at $m/z$ 44, 45 and 46, respectively. The three ion beams are registered simultaneously by a multiple Faraday cup (FC) arrangement with a dedicated FC for each isotopomer. The resulting ion currents are continuously monitored, subsequently digitised and transferred to the host computer. Here, the peak area for each isotopomer is integrated quantitatively and the corresponding ratios are calculated.

In both application areas of IRMS (low level enrichment and natural abundance work), small variations in very small amounts of the heavier isotope are detected in the presence of large amounts of the lighter isotope. The abundance $A_s$ of the heavier isotope $n_s$ in a sample $s$, given in at.%, is defined as:

$$A_s = R_s/(1 + R_s) \times 100 \text{ (at.%) (1)}$$

where $R_s$ is the ratio $n_s/n_1$ of the two isotopes for the sample. The enrichment of an isotope in a sample as compared to a standard value ($A_{\text{std}}$) is given in at.% excess (APE):

$$\text{APE} = A_s - A_{\text{std}} \text{ (2)}$$

Since the small variations of the heavier isotope habitually measured by IRMS are of the order of 0.001–0.05 at.% the $\delta$-notation in units of per mil ($\delta_e$) has been adopted to report changes in isotopic abundance as a per mil deviation compared to a designated isotopic standard:

$$\delta_s = (R_s/R_{\text{std}} - 1) \times 1000 \text{ (e)} \text{ (3)}$$

where $R_s$ is the measured isotope ratio for the sample and $R_{\text{std}}$ is the measured isotope ratio for the standard.

2.2. GC–C–IRMS

From the above it is obvious that a GC cannot be directly coupled to an IRMS. The need for sample conversion into simple gases has prompted the design of a combustion interface where the GC effluent is fed into a combustion reactor (Fig. 1). This reactor, either a quartz glass or ceramic tube, is filled with CuO/Pt or CuO/NiO/Pt and maintained at a temperature of approximately 820 or 940°C, respectively [5,6]. The influence of combustion tube packing on analytical performance of GC–C–IRMS has been reported by Eakin et al. [7]. To remove water vapour generated during combustion, a water trap is required. Most instrument manufacturers employ a Nafion tube for this purpose. Nafion is a fluorinated polymer that acts as a semi-permeable...
membrane through which water passes freely while all the other combustion products are retained in the carrier gas stream. Quantitative water removal prior to admitting the combustion gases into the ion source is essential because any water residue would lead to protonation of CO₂ to produce HCO₂⁻, which interferes with analysis of ¹³CO₂ (isobaric interference). Very recently, a detailed study of this effect has been reported by Lecktrone and Hayes [8].

In dual-inlet systems, the analyte gas comes from a reservoir and only travels a short distance prior to entering the ion source. For this reason, the gas pulses result in rectangularly shaped signals. In contrast, in continuous flow IRMS (CF–IRMS) systems used for gas isotope analysis on-line gas purification steps and overall interface length lead to Gaussian-shaped signals. This is evidently even more pronounced in GC–C–IRMS systems, where analyte peaks eluting from the GC column are fed into an on-line microchemical reactor to produce, e.g., CO₂ peaks. However, due to the chromatographic isotope effect [9–11] the m/z 45 signal (¹³CO₂) precedes the m/z 44 signal (¹²CO₂) by 150 ms on average (Fig. 2) [5], an effect not observed in ordinary CF–IRMS systems. This time displacement depends on the nature of the compound and on chromatographic parameters such as polarity of the stationary phase, column temperature and carrier gas flow [12]. Therefore, loss of peak data due to unsuitably set time windows for peak detection and, hence, partial peak integration will severely compromise the quality of the isotope ratio measurement by GC–C–IRMS, as will traces of peak data from another sample compound due to close proximity resulting in peak overlap with the sample peak to be analysed. Due to the fact that isotope ratios cannot be determined accurately from the partial examination of a GC peak, HReGC resulting in true baseline separation for adjacent peaks is of paramount importance for high-precision CSIA.

It should be noted, that the chromatographic isotope effect is not caused by a vapour pressure effect but is the result of different solute/stationary phase interactions that are dominated by Van der Waals dispersion forces leading to an earlier elution of the heavier isotopomer [11]. This difference in chromatographic solute/stationary phase interaction is caused by lower molar volumes of the labelled, and thus heavier, compounds. The reason for the decrease in molar volume is the increased bond strength and thus shortened bond length between ¹³C–H and, to a lesser degree, ¹₂C–¹³C, and ¹²C–¹³C, respectively. If the chromatographic isotope effect would indeed be the result of a vapour pressure effect, one would expect the lighter isotope species of a given compound to elute more rapidly.

Fig. 1. Set-up of an isotope ratio mass spectrometer coupled to a gas chromatograph via a combustion interface to measure ¹³C/¹²C (carbon mode) or ¹⁵N/¹⁴N ratios (nitrogen mode). This schematic shows the reference gas set-up used for automated internal isotopic calibration [24].
from the column because of its higher vapour pressure and, hence, lower boiling point as compared to the heavier isotope species.

Although baseline separated peaks should be the ultimate goal in GC–C–IRMS, there is many an application where overlapping peaks simply cannot be avoided. In addition, CO₂ and N₂ disperse more freely within the carrier gas stream than their parent organic compounds resulting in overlapping CO₂ peaks for barely baseline resolved GC peaks. To extract the valuable information obscured by such peak overlaps, Goodman and Brenna [13,14] suggested software algorithms for improved data processing. These algorithms were based on curve fitting rather than the summation (the industrial standard) using combinations of exponentially modified Gaussian (E) and Harhoff/Van-der-Linde (H) functions and were tested on up to 70% valley peak overlap. When the adjacent peaks were of equal abundance (leading peak:trailing peak, 1:1) combinations of HE and HH appeared to provide the best recovery of isotope ratios. In the case of unequal abundance in favour of the leading peak (10:1), the HH combination gave the best accuracy. When the abundance was reversed (1:10), the EH combination provided the best accuracy but only for peak overlap up to 40% valley. Despite these encouraging results, curve-fitting algorithms for restoring lost accuracy have not been incorporated into any commercial IRMS data reduction software by IRMS manufacturers. It could be argued that the potential of curve-fitting algorithms was only demonstrated on two compounds, methyl tridecanoate and butylated hydroxytoluene, which were of almost identical carbon isotope ratios and that any curve-fitting software should also be able to extract accurate and precise isotope ratios of two overlapping compound peaks with different carbon isotope ratios. However, any progress in this direction needs to be aided by full evaluation of new algorithms for routine use (under ‘real life conditions’), thus requiring wide user access to such algorithms which in turn depends on the support from IRMS manufacturers.

2.2.1. Sample preparation

To achieve high-precision CSIA by GC–C–IRMS the following points must be considered:

1. Every step of the sample preparation protocol (collection, work up, derivatization) must be scrutinised for potential mass discriminatory effects to avoid isotopic fractionation of the target compounds.
2. If the potential of isotopic fractionation cannot be ruled out conclusively, an internal standard, of a similar chemical nature (but not requiring derivatization) and of known isotopic composition, should be added to the sample prior to sample preparation.
3. Signal size and isotopic composition of the standard(s) must match those of the analyte(s) [15].
4. The potential of all GC parameters (polarity of stationary phase, carrier gas management, temperature programme) and techniques should be exploited to their fullest to achieve HRcGC.
2.2.1.1. Derivatization

Despite their importance for high-precision CSIA, dedicated studies addressing issues of sample preparation are few and far between. Schumacher et al. compared different sample preparation methods for isotopic analysis of volatile organic compounds (VOCs) from strawberries [16]. Khalfallah et al. reported a correction method to compensate for $^{13}$C tracer dilution by carbon added during derivatization [17], and a carbon balance equation was described by Demmelmaier and Schmidt to calculate $\delta^{13}$C values of free amino acids from $\delta^{13}$C values of their derivatives at natural abundance level [18]. Kinetic isotope effects associated with derivatization reactions and resulting theoretical considerations for calculating $\delta^{13}$C values have been discussed by Rieley [19].

Of course, one way of avoiding the problems with derivatization is not to derivatize the sample at all. This approach involves the use of moderately polar to polar stationary phases and high-temperature GC. However, not all polar compounds are amenable to these techniques (e.g., amino acids) and high-temperature capability of polar stationary phases is limited even when oxygen free helium is used as carrier gas.

In addition to changes in $^{13}$C isotopic signature by derivatization, its effects on GC separation and sample conversion into CO$_2$ and N$_2$ have to be considered. Derivatization by silylation might hamper GC separation as the apolar nature of trimethylsilyl (TMS) and tert.-butyldimethylsilyl (tBDMS) derivatives can obscure compound characteristics that could otherwise be chromatographically exploited. Furthermore, an excessive carbon load introduced by derivatization might result in incomplete combustion thus compromising accurate isotopic analysis. For reasons of non-quantitative sample conversion, the use of trifluoroacetates (TFA) or heptafluorobutyrate (HFB) is not advisable as fluorine forms extremely stable fluorides with Cu and Ni, thus irreversibly reducing combustion efficacy of the CuO/NiO system. In addition, fluorine poisons the combustion catalyst platinum. Experiments with $N$-TFA, $O$-propylates of alanine and leucine have shown that only 50% of the expected CO$_2$ yield was produced [20].

2.2.2. Isotopic calibration

For reasons mentioned before, it is not possible in GC–C–IRMS to calibrate target compounds against a standard of known isotopic composition, introducing the standard in exactly the same way as the analyte. There are only three feasible means of introducing a standard: (a) addition of reference compounds to the sample, (b) introduction of reference gas pulses to the carrier gas stream, or (c) introduction of reference gas pulses directly into the ion source.

Caimi et al. comprehensively listed all the desirable properties internal reference compounds should possess: (1) high chemical stability; (2) conveniently available in high purity; (3) readily soluble in high-purity solvents; (4) low vapour pressure at room temperature and atmospheric pressure; (5) environmentally rare; (6) ideally useful for GC and liquid chromatography (LC) techniques; and (7) sufficiently different chromatographic characteristics to avoid partial or complete co-elution with sample analytes [21].

The results of an extensive study into methods of isotopic calibration by Merritt et al. emphasised these demands [22]. Comparing the use of internal reference compounds with the introduction of reference gas pulses directly in the ion source of the IRMS, Merritt et al. found an offset of $\approx 2\%$ between the two methods in the case of incomplete combustion and other systematic errors affecting only the analytes. These systematic errors affected both the analytes and the co-injected reference compounds but were not reflected by the external reference gas pulses. Similar observations were made by other groups interested in isotopic calibration [12,21,23]. In the absence of such systematic errors, Merritt et al. found that both methods of isotopic calibration gave consistent results as long as multiple reference peaks were used to permit drift correction. Only one reference peak for isotopic calibration, albeit from an internal reference compound, is not enough to compensate for the influence of GC parameters, such as analyte/stationary phase interaction, column temperature on measured isotope ratios [12].

Within the GC–C–IRMS system, seven potential sources for mass discrimination and, hence, sys-
tematic errors can be identified: (1) isotopic fractionation during sample injection (which can be overcome by on-column or time programmed splitless injection); (2) chromatographic isotope effect; (3) chromatographic peak distortion (leading and trailing peak tail); (4) combustion process; (5) peak distortion of $N_2/CO_2$ gas peak during passage of the combustion interface; (6) changing flow conditions at the open split prior to the IRMS; and (7) the IRMS itself. Obviously, the external reference gas pulses only compensate for item (7), whereas internal reference compounds reflect all of the aforementioned. Recently, a method for isotopic calibration was reported that, provided a combustible gas was used, could reflect the systematic errors caused by items (4–7) [24]. This method combines the convenience and practicability of external reference gas calibration with the advantage of reflecting the majority of physical influences to which analytes are subjected in a GC–C–IRMS system.

2.2.3. HRcGC

As pointed out earlier, baseline separated gas chromatographic peaks are the basis for high-precision CSIA. To achieve this goal, in the first instance, basic gas chromatographic rules must be observed: (1) the polarity of the stationary phase should meet the polarity of the analytes; (2) column head pressure and, hence, carrier gas velocity, should be set to suit column diameter; and (3) temperature gradients should be chosen to exploit the maximum of the column length (the longer the column, the slower the temperature rise per minute; cf. Table 1) [25].

Further to these principles, HRcGC techniques such as multi-dimensional capillary GC (MDcGC), enantio-selective GC, porous layer open tubular (PLOT) column GC for analysis of VOCs and high-temperature capillary GC (HTcGC) are powerful tools for high-precision CSIA when used in combination with GC–C–IRMS. Nitz et al. were the first to report the advantages of using MDcGC in GC–C–IRMS [26]. MDcGC is now, often in combination with enantioselective GC, almost exclusively used in authenticity control of flavours and fragrances by CSIA [27,28]. In a similar fashion, HTcGC is strongly associated with CSIA of steroids and long-chain fatty acids (e.g., Ref. [29]).

Regrettably, the achievements of HRcGC in terms of well-defined peak shape and baseline separation are likely to be impaired during combustion and the subsequent passage through the interface. Changes in tubing diameter and frequent use of unions to connect the various parts of tubing lead to a loss in peak definition (peak broadening; peak distortion) and even to partial peak overlap, all of which have a detrimental effect on accuracy and precision of isotope ratio measurement [12]. Very recently, Goodman reported a single-capillary interface design (SCID) which he developed to overcome these problems [30]. As the name suggests, a single capillary was used to connect the GC column to the open-split in front of the IRMS. This capillary was threaded through a furnace and accommodated two

<table>
<thead>
<tr>
<th>Column length (m)</th>
<th>Elution of methane (s)</th>
<th>Temperature gradient (°C/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>35</td>
<td>2.5</td>
</tr>
<tr>
<td>15</td>
<td>53</td>
<td>1.65</td>
</tr>
<tr>
<td>20</td>
<td>70</td>
<td>1.25</td>
</tr>
<tr>
<td>25</td>
<td>88</td>
<td>1.05</td>
</tr>
<tr>
<td>30</td>
<td>105</td>
<td>0.84</td>
</tr>
<tr>
<td>40</td>
<td>140</td>
<td>0.63</td>
</tr>
<tr>
<td>50</td>
<td>175</td>
<td>0.5</td>
</tr>
</tbody>
</table>

*Based on working directions given by Grob [25].

*Set GC oven temperature to 30°C. Set split ratio to about 1:30, inject a few µL of natural gas (or lighter gas) and measure elution time of the first peak (FID signal). Adjust column head pressure to match recommended elution time.
CuO wires positioned thus as to coincide with the furnace dimensions. So far, this design has been tested for $^{13}$C isotopic abundance analysis of n-alkanes.

3. High-precision CSIA of $^{13}$C isotopic abundance

3.1. GC−C−IRMS at natural abundance level

High-precision CSIA of $^{13}$C isotopic abundance at both natural abundance (NA) and low enrichment level can yield measurements of $\delta^{13}$C values with a precision of 0.3‰ on average. Thanks to this high precision, even small changes in $^{13}$C isotopic abundance of 1‰ can be reliably detected. For this reason GC−C−IRMS has become the method of choice to determine the origin of a given organic compound by measuring its characteristic isotope ‘finger print’.

In contrast to the generally held opinion, the natural abundance of stable isotopes is not a fixed constant but displays a considerable, yet subtle, degree of variation. The variation on the natural abundance of $^{13}$C can be as high as 0.1 at.‰ (Fig. 3). This wide range reflects the varying degree of mass

---

**Fig. 3.** Some typical examples of natural $\delta^{13}$C values grouped according to origin along the scale of $^{13}$C natural abundance.
discrimination associated with the different pathways of carbon assimilation and fixation. To give an example, in terms of $^{13}$C isotopic abundance, beet sugar is not the same as cane sugar. In sugar beet CO$_2$ fixation results in the formation of a C$_3$ body, 3-phosphoglycerate (3-PGA). This pathway of CO$_2$ fixation is known as the Calvin cycle. Plants using the 3-PGA pathway for CO$_2$ fixation are commonly called C$_3$ plants. However, some plants, of which sugar cane is one, make use of a different pathway. Here, CO$_2$ fixation yields a C$_4$ dicarboxylic acid, oxaloacetate, hence the term C$_4$ plants (the C$_4$-dicarboxylic acid pathway is also known as the Hatch–Slack cycle). The products of these two pathways are characterised by their different $^{13}$C abundance. Glucose derived from C$_3$ plants has a $^{13}$C$_2$ value of about $-25\%$, whereas glucose derived from C$_4$ plants exhibits a more positive $^{13}$C value of about $-11\%$ indicating a mass discriminatory bias towards $^{13}$CO$_2$ of the Hatch–Slack cycle.

Differences in $^{13}$C values were reported for total leaf tissue, total surface lipid extracts, and individual n-alkanes isolated from plants utilising either C$_3$, C$_4$, and crassulacean acid metabolism (CAM) pathways for carbon fixation [31,32]. The average $^{13}$C$_2$ values obtained from C$_3$ plant material were between 10 and 15% lower compared to the corresponding $^{13}$C$_2$ values obtained from C$_4$ and CAM plant material.

Measurement of the isotopic abundance of $^{13}$C for lutein isolated from marigold (C$_4$) and maize (C$_4$) yielded $-29.90 \pm 0.20$ and $-19.77 \pm 0.27\%$, respectively, showing a similar difference of $>10\%$ between the two photosynthetic pathways [33].

Although the vast majority of plants belong the C$_3$ group (>300 000) with bulk $^{13}$C$_2$ values of $<-24\%$, differences in the rate of photosynthesis (mainly caused by differences in climate and geographical location) and in enzyme kinetics of biochemical pathways result in subtle variation of $^{13}$C/$^{12}$C ratios that can be detected by GC–C–IRMS. Lockheart et al. were able to detect inter- and intra-specific differences in $^{13}$C values for n-alkanes and alcohols in sun and shade leaves from oak and beech ranging from 0.7 to 3.0% [34]. These subtle differences in $^{13}$C values can be used to determine origin of an organic compound and, thus, the authenticity of a sample.

3.1.1. Authenticity

3.1.1.1. Flavours and fragrances

Bernreuther et al. measured $^{13}$C/$^{12}$C isotope ratios of natural and nature-identical γ-decalactone and reported significant differences in $^{13}$C values that were source dependent although all plants belonged to the C$_3$ group [35]. For natural γ-decalactone from stone fruit (apricot and peach) they found $^{13}$C values ranging from $-38.0$ to $-40.8\%$, respectively, that were significantly different from $^{13}$C values of γ-decalactone extracted from soft fruit (strawberry) which were $-29.2\%$ on average. In contrast, $^{13}$C values of artificial (nature-identical) γ-decalactone ranged from $-24.4$ to $-26.9\%$, whereas γ-decalactone of biotechnological origin showed $^{13}$C values of $-30.8\%$ on average.

In an independent study, Mosandl et al. demonstrated the additional advantage to be gained from enantioselective GC–C–IRMS on samples of synthetic γ-decalactone (racemate RAC; 4R:4S=50:50), γ-decalactone of biotechnological origin (BIO; 4R>99% ee), and a mixture of both (BIO: RAC=60:40) [36]. They reported for the enantiomerically pure (4R)-γ-decalactone of biotechnological origin a $^{13}$C value of $-30.12 \pm 0.14\%$ which is in good agreement with the $^{13}$C values measured by Bernreuther et al. The separated enantiomers of the nature-identical product showed, as could be expected, identical $^{13}$C values within the observed standard deviation (4R, $-28.32 \pm 0.36\%$; 4S, $-28.18 \pm 0.39\%$). Mixing 60% of BIO with 40% of RAC yielded an enantiomeric distribution of 4R:4S=80:20, with 75% of the 4R-configured γ-decalactone being of biotechnological origin. The measured $^{13}$C value of the 4R enantiomer in this mixture was $-29.62 \pm 0.33\%$ which was in good agreement with the theoretically expected value of $-29.67\%$. The $^{13}$C value of the 4S enantiomer in this mixture was of course the same as for the 4S enantiomer in the pure synthetic sample ($-28.08 \pm 1.30\%$).

This early work suggested that two phenomena of biosynthetic pathways, enantioselectivity and mass discrimination (kinetic isotope effects), might serve as compound-specific parameters to establish origin and, hence, to control authenticity of natural flavours and fragrances. However, when focused on indi-
individual compounds the application of stable isotope abundance measurement is only of limited use as most plants cultivated for human consumption are C₄ plants whose ¹³C isotopic signatures partially overlap with those of synthetic compounds derived from fossil sources or those of compounds produced by biotechnological methods.

This problem was soon recognised and Mosandl’s group suggested the use of genuine internal isotopic standards and formulated the following recommendations [37,38]:

1. the compound selected as internal isotopic standard should be a genuine characteristic compound of lesser sensorial relevance;
2. the compound must be available in the sample in sufficient amounts and must not be susceptible to mass discrimination during sample preparation;
3. the selected compound must be biogenetically related to the compounds under investigation;
4. chemical inertness of the compound during storage and/or technical processes is mandatory;
5. the compound selected as internal isotopic standard must not be a legally allowed additive.

The obvious advantage of using an internal standard, biogenetically related to characteristic sample compounds, is the elimination of variations in the δ¹³C-signature resulting from, e.g., climate-dependent variations of the photosynthetic rate and the kinetic isotope effect associated with the CO₂ fixation step. Therefore, only the characteristic kinetic isotope effects caused by enzymatic reactions during secondary biogenetic pathways are investigated, and the resulting relative δ¹³C values can be used as a sample-specific fingerprint (cf. Fig. 4).

Applying the aforementioned recommendations, Mosandl and co-workers, who have to be regarded as the leaders in the field of authenticity control, studied a wide range of commercially relevant flavours and fragrances and assessed authenticity of allegedly natural samples from commercial sources. The materials studied included lemon oil [37], balm oil [39], citronella oil [39], lemongrass oil [39], coriander oil [40], bergamot oil [41], orange oil [42], mandarin oil [43,44], peppermint oil [45], volatile components from strawberries [16] and apples [46] and α- as well as β-ionone from raspberries [47]. Using self-prepared authentic samples, sample-specific fingerprint prints of six to eight biogenetically related compounds were established based on δ¹³C values relative to an internal standard (either limonene, γ-terpinene or neryl acetate). With the help of these finger prints, samples made up entirely of synthetic compounds and even samples containing mixtures of authentic (natural) material and synthetic compounds could be reliably identified. In cases where chiral compounds such as linalol occur naturally as enantiomeric pairs, gc–c–irms could even detect non-authentic samples imitating the natural enantiomeric ratio by measuring the δ¹³C values of each enantiomer [40,48].

3.1.1.2. Wine, fruit juice and honey

In the early days of GC–C–IRMS, detection of added sugar in fruit juice and wine was fairly simple as mainly cheap corn syrup (maize: C₄ plant) was predominantly used to boost sugar and/or ethanol content, respectively. Measuring δ¹³C values of glucose or bulk carbon was sufficient to prove adulteration. However, addition of small amounts of C₄ plant sugars (≤10%) to C₃ plant products such as wine, fruit juice and honey, or the addition of sugars from other C₃ plants (sugar beet; concentrated and deflavoured grape juice) could no longer be detected by these measurements [49]. Schmidt and co-workers studied several methods based on high-precision CSIA to determine authenticity of wine, fruit juices and honey, and to prove fraudulent addition of sugars and even vitamin C from other sources. Their research revealed that in authentic fruit juices biogenetically related compounds such as L-ascorbic acid [50,51], L-malic acid [52] and L-tartaric acid [51] showed δ¹³C values strongly correlating with those of their corresponding sugars. For instance, the δ¹³C value of L-ascorbic acid is +4.8‰ higher than that of its precursor glucose. This enrichment is mainly located in the C-1 position of L-ascorbic acid of authentic origin and the result of plant-specific kinetic isotope effects during biosynthesis, whereas L-ascorbic acid of biotechnological origin preserves the ¹³C pattern of glucose [51].

In glycerol originating from natural sources, Weber et al. found a ¹³C depletion position specific for C-1 and they suggested this unique feature might be used as a means to test for illegal addition of synthetic glycerol to wines [53]. They also discov-
ered a constant $\Delta \delta^{13}C$ correlation between ethanol and citric acid (+2.4‰) in addition to the known $\Delta \delta^{13}C$ correlation between fermented sugar and ethanol (−1.7‰) [54]. Dennis et al. suggested the use of $\delta^{13}C$ values of sorbitol as a further means for authenticity control of wines [55].

3.1.1.3. Vegetable oils

High-quality, single-source vegetable oils are another target for fraudulent adulteration, i.e., partial or total substitution of minor quality and, hence, cheaper oils for the high quality product. In a blind study, Woodbury et al. were able to detect the adulteration of maize germ oil with oils of $C_3$ plant origin down to a level of 5% (w/w) [56]. They found the saturated 16:0 fatty acid in maize oil to be more depleted in $^{13}C$ than the corresponding unsaturated fatty acids 18:1 and 18:2. In addition, consistent differences were observed for $\delta^{13}C$ values of vegetable oils from different geographical regions. In a subsequent study, Woodbury et al. determined fatty acid composition and $\delta^{13}C$ values of the major fatty acids of more than 150 vegetable oils [57], thus...
establishing a database that provides isotopic information for authenticity control of vegetable oils. Variability in $\delta^{13}$C values could be related to geographical origin, year of harvest, and the particular variety of oil. Their findings suggest that ultimately $\delta^{13}$C values of fatty acids are determined by a combination of environmental and genetic factors.

Kelly et al. investigated authenticity of single-seed vegetable oils of C3 plant origin such as groundnut, palm, rape seed and sunflower oils [58]. They found that the $\delta^{13}$C values for the authentic vegetable oil fatty acids fell within a narrow range of $-27.6$ to $-32.1\%$. Employing canonical discriminant analysis, $^{13}$C data from sunflower oil could be separated from other oils, exploiting small, yet significant, differences in $\delta^{13}$C values within the oil varieties. To detect adulteration of olive oils, Angerosa et al. compared $\delta^{13}$C values of the aliphatic alcoholic oil fractions and found those of the adulterant pomace oil to be significantly more negative than those of virgin and refined olive oils [59]. Furthermore, they studied isoprenoids and methylsterols isolated from each grade of olive oil and showed the better the olive oil grade, the more positive (i.e., less negative) the $\delta^{13}$C values of these compounds became.

3.1.1.4. Drugs

Measuring $^{13}$C isotopic abundance of heroin to trace the origin of heroin samples in narcotic drug abuse, showed some evidence of variation in $\delta^{13}$C values of heroin depending on its geographical site of production [60]. A preliminary study to trace the origin of different batches of confiscated 3,4-(methyldioxy)methylamphetamine (MDMA, Ecstasy) tablets by GC–C–IRMS allowed the discrimination of four different groups of MDMA tablets based on variations in their NA $\delta^{13}$C values [61]. The same study showed that further discrimination could be obtained when using $\delta^{15}$N values of MDMA.

Prompted by the uncertainty associated with the T/E > 6 test that measures the ratio of testosterone (T) and epitestosterone (E) and the high public interest in alleged doping in athletes, several studies have been carried out to use metabolic pathway related $^{13}$C isotope patterns to differentiate between endogenous human testosterone and exogenous testosterone [62]. In the human body, testosterone is synthesised from cholesterol via dehydroepiandrosterone and is then further metabolised to androstanediol. The group around Aguilera et al. found that the averaged $\delta^{13}$C values for endogenous 5α- and 5β-androstanediol dropped from $-26.52\%e$ before synthetic testosterone administration (natural background or baseline value) to $-32.44\%e$ during testosterone administration [63]. Independent work by Shackleton et al. obtained a similar baseline $\delta^{13}$C value of $-26.87\%e$ and a drop down to $-30.21\%e$ on average for androstanediol samples after a bolus administration of 250 mg exogenous testosterone [64,65]. This drop of about $-2\%e$ lasted for up to 10 days before $\delta^{13}$C values of androstanediol returned to their former baseline value. They also reported a narrow range of $-29.15$ to $-30.41\%e$ for five synthetic testosterone samples manufactured in five different countries. Based on the results reported by Aguilera et al. [63] and their own, Shackleton et al. suggested a conservative cut-off value of $-29.0\%e$ for androstanediol to identify unambiguously testosterone abuse for up to 7 days after administration.

Hydrocortisone abuse in horse racing and other equine sports can be confirmed on the basis of significantly different $^{13}$C isotope patterns between endogenous urinary hydrocortisone and synthetic material. This method, proposed by Aguilera et al., employs conversion of urinary hydrocortisone into its bismethylenedioxy derivative to improve its gas chromatographic properties [66].

3.1.2. Origin

3.1.2.1. Geochemistry

The desire to study $^{13}$C isotope abundance of sedimentary hydrocarbons on a molecular level was one of the driving forces behind the development of GC–C–IRMS. Geochemists and archaeologists wanted to extract all possible information contained in fossil biomarkers such as sedimentary long-chain alcohols and sterols [67], triterpene-derived hydrocarbons [68], neutral monosaccharides [69], long-chain alkanes [70–74], alkanes and isoprenoids [75,76], polycyclic aromatic hydrocarbons (PAHs) [77], amino acids [78–80] and phenolic acids [81]. Freeman et al. measured hydrocarbons from sediments deposited in the Messel shale and found a wide spectrum of $\delta^{13}$C values ranging from $-20$
down to $-75\%$, thus proving the equally wide spectrum of origins [82]. The extreme negative values were thought to indicate the activity of methanotrophic bacteria, as $\delta^{13}C$ values of $<-45\%$ thus far had only been observed for methane but not for larger molecules. This and others studies [68,69,73,83] demonstrated that sedimentary organic compounds contain contributions of bacterial origin rather than being solely of plant origin. Using GC–C–IRMS to measure $^{13}C$ isotope abundance in hydrocarbons from sedimentary rocks across the Precambrian–Cambrian boundary, Logan et al. [84] were able to shed some light on the development of multicellular life during the so-called ‘Cambrian explosion’. Based on the isotopic data, they could show a transition from an environment dominated by sulphate-reducing bacteria to one dominated by photosynthetic organisms, thus transforming the hitherto anaerobic ocean into an aerobic ocean.

3.1.2.2. Archaeology
Measuring $^{13}C/^{12}C$ isotope ratios has become an increasingly important tool to glean information on prehistoric diet and lifestyle from organic residues preserved in archaeological artefacts. Employing both HTcGC–MS and HTcGC–C–IRMS to identify chemical structures and measure $\delta^{13}C$ values, respectively, Evershed et al. showed that lipid extracts (C$_{25}$–C$_{33}$ alkanes and a C$_{29}$ ketone, nonacosain-15-one) from organic residues found in archaeological pots were derived from Brassica species (wild-type cabbage) [85]. Later work on organic residues from archaeological pottery vessels found C$_{31}$, C$_{33}$ and C$_{35}$ ketones with $\delta^{13}C$ values that were up to $10\%$ higher than those found for the C$_{29}$ ketones from wild-type Brassica species. Based on HTcGC–MS and HTcGC–C–IRMS data, Evershed and co-workers formed the hypothesis that a precursor/product relationship may exist between C$_{35}$ ketones and fatty acids, and corresponding triacylglycerols such as tripalmitin and tristearin from animal fats [86]. Studying pyrolysis reactions of acyl lipids and monitoring their products by HTcGC–MS and HTcGC–C–IRMS, they could confirm that C$_{31}$, C$_{33}$ and C$_{35}$ mid-chain ketones found in archaeological pottery vessels were indeed derived from a mixture of free fatty acids [87]. Comparing carbon number distributions of triacylglycerols and $\delta^{13}C$ values of 16:0 and 18:0 acyl moieties of lipid compounds from extracts of neolithic vessels with modern reference animal fats, Evershed et al. could identify animal fat residues found in vessels dated circa 4200 BP as being close to reference pig adipose fats, whereas residues found in vessels dated circa 4500 BP were closer to reference ruminant fat [88].

O’Donoghue et al. reported $\delta^{13}C$ values in the range of $-25.4$ to $-29.2\%$ for the principal fatty acids (16:0 to 24:1) of radish seed found in a 6th century AD storage vessel [89]. Composition and $\delta^{13}C$ values of fatty acids found in the ancient radish seeds matched closely those found in modern radish seeds.

Stott et al. measured $\delta^{13}C$ values of cholesterol and 3β-hydroxycholest-5-en-7-one from fossil whale bones [90] and archaeological human bones and teeth [91], and showed that their $^{13}C$ content could be used as an important new source of palaeodietary information. Another insight into prehistoric life was gleaned from the $^{13}C$ analysis of adsorbed lipids preserved in the fabric of Minoan lamps and conical cups. The $\delta^{13}C$ values together with HTcGC–MS profiles identified beeswax as the illuminant burned in prehistoric Aegean lamps rather than olive oil as hitherto supposed [92].

3.1.2.3. Environmental chemistry
Monitoring environmental and climate changes by measuring $\delta^{13}C$ values of atmospheric gases such as methane, carbon monoxide and carbon dioxide has traditionally been carried out using dual-inlet IRMS systems. Their measurements however, required time-consuming sample preparation of large sample volumes. The high abundance sensitivity of GC–C–IRMS together with the use of PLOT fused-silica capillary columns for routine GC analysis of highly volatile organic compounds (HVOCs) has now become the method of choice for scientists as air samples between 50 µl and 5 ml can be analysed on-line without any prior sample preparation [93–95].

High-precision CSIA by GC–C–IRMS is also used to determine origin and identify sources of oil spills and oil pollution [96–98], ocean-transported bitumen [99], characterisation of refractory wastes at heavy-oil contaminated sites [100,101] and to trace
the sources of PAHs in the environment [102–104]. Bird et al. used GC–C–IRMS to record the $\delta^{13}C$ values of individual biomarker compounds (n-alkanes) to assess vegetation changes [105], whereas Naraoka et al. measured differences in $\delta^{13}C$ values of long-chain fatty acids (C$_{20}$–C$_{30}$) that had been extracted from terrestrial and marine sediment [106].

3.2. Tracer studies

The high abundance sensitivity of GC–C–IRMS has also been increasingly exploited in metabolic studies investigating turnover, incorporation and synthesis processes in vivo that could previously only be investigated either with stable isotope tracers at high enrichment level using GC–MS, or not at all. The latter usually for reasons of excessive tracer dilution in the various metabolic pools and/or low incorporation rates. Although in these cases radioactive tracers can provide an alternative, their use is associated with certain risks which are nowadays regarded as unacceptable especially when dealing with members of the paediatric age group.

GC–C–IRMS proved to be a decisive tool in determining if and to what extent neonates and premature infants of very low birth weight could synthesise arachidonic acid, which is essential for their growing tissues, from dietary fatty acids. Demmelmair et al. could show that in neonates fed on a phenylalanine-free diet, on average 23% of free plasma arachidonic acid on study day 4 originated from infantile linoleic acid conversion [107]. They determined $^{13}C$ content of linoleic acid and arachidonic acid in 0.25–0.5 ml serum before and for 4 days after the infants’ diet contained corn oil. Baseline $\delta^{13}C$ values for linoleic acid and arachidonic acid were $-31.5 \pm 1.1$ and $-30.1 \pm 1.2\%e$, respectively; after 4 days, changes in $\delta^{13}C$ values over baseline were $+12.7 \pm 0.7$ and $+2.7 \pm 0.7\%e$, respectively. Carnielli et al. added linoleic acid and linolenic acid, both $^{13}C$-labelled, to the formula diet which was administered continuously for 48 h (birth weight, 1.17 ± 0.12 kg; gestational age, 28.4 ± 1.3 weeks) [108]. They could show that both tracers were rapidly incorporated into plasma phospholipids and that their metabolic products including arachidonic acid and docosahexaenoic acid became highly enriched with $^{13}C$. Incorporation of $^{13}C$-octanoic acid into plasma triglycerides (10% of the enrichment of the diet), noticeably into myristic and palmitic acid, by very low-weight preterm infants was reported earlier by the same group [109].

A similar observation was made during a study with an entirely different objective. Using GC–C–IRMS, Koziet et al. could demonstrate that ethanol itself may be used as a substrate for lipogenesis, although only to a small extent [110]. They calculated that <10% of fatty acids contained in very-low-density lipoproteins (VLDL) triglycerides were derived from this pathway, with ethanol predominantly being incorporated into myristic and palmitic acid.

The majority of $^{13}C$ tracer studies published have dealt with various aspects of fatty acid biochemistry, such as metabolism of triglycerides [111,112], and transport and turnover of free saturated [113–115] and unsaturated fatty acids [116–120]. While studying the metabolism of $^{13}C$-labelled polyunsaturated fatty acids by $^{13}C$ NMR, using GC–C–IRMS, Cunnane et al. found low levels of $^{13}C$-labelled $\gamma$-linolenic acid in brain phospholipids of suckling rat pups that could not be detected by $^{13}C$ NMR [121].

Employing $^{13}C$ tracers at low levels of enrichment, reliable data were obtained in studies of the kinetics of glucose [122,123] and glycoprotein neutral sugars [124,125], cholesterol and lipoproteins [126], phosphatidylcholine [127], urea [128,129], branched-chain amino acid metabolism [130], measuring protein fractional synthetic rates [131] and protein synthesis in colorectal cancer cells [132,133]. Roscher et al. used L-rhamnose with two different levels of $^{13}C$ abundance in parallel experiments to determine if L-rhamnose serves as a carbon source for furanoeol [134].

Unlike GC–MS, where increasing the amount of label has no general effect on detection limits, in GC–C–IRMS, increasing label enrichment in precursor compounds produces significantly improved detection limits. In a recent review of high-precision CF–IRMS, Brenna et al. discussed theoretical and practical considerations for this type of study [135]. High-precision CSIA in this type of tracer studies has been shown to possess advantages over organic GC–MS for stable isotopic tracer detection and to be.
superior to radio-isotopic tracer methods in terms of dose size and analysis efficiency [136]. Guo et al. reported that GC–C–IRMS provides 15-fold lower detection limits for \(^{13}C_2\)–C3,C4 cholesterol than organic GC–MS [137]. Using \([U-^{13}C]\alpha\)-linolenic acid, Sheaff et al. were able demonstrate that conversion of \(\alpha\)-linolenate into docosahexaenoate was not depressed by high dietary levels of linoleic acid [117]. An interconversion of saturated dietary fatty acids (e.g., 18:0) into unsaturated fatty acids (e.g., 18:1) in plasma of about 14% was reported by Rhee et al. [138]. Menand et al. applied this technique to measure carbon incorporation into plasma glutamine [139]. Practical aspects of this technique have been investigated by Dube et al. [140,141].

4. Compound-specific isotope analysis of \(^{15}N\) isotopic abundance

High precision CSIA of \(^{15}N\) isotopic abundance faces three major challenges. First, the relatively low concentration of nitrogen in organic compounds (for instance, amino acids contain two to 11 times more carbon than nitrogen). Secondly, \(^{15}N/^{14}N\) isotope ratios are measured on \(N_2\), which means the compound conversion step requires a reduction process and, in the case of amino acids, the formation of one mol equivalent of \(N_2\) produces 4–22 molequivalents of \(CO_2\) (if we regard the derivatised case). Lastly, even small amounts of atmospheric gas leaks into the instrument result in a high \(N_2\) background.

Due to the wide spectrum of applications that would benefit from a system capable of analysing \(^{15}N\) isotopic enrichment down to natural abundance level, especially because there is no radioactive alternative, these difficulties did not delay instrument development for too long. The desire to study for example nitrogen fixation in plants and micro-organisms and nitrogen metabolism in humans, as well as the possibility to quantify gene expression by measuring mRNA turnover, prompted two groups to extend the scope of GC–C–IRMS. In 1994, Preston and Slater presented a system with a conversion interface comprising combustion furnace, liquid \(N_2\) cold trap, to trap \(CO_2\) and water, and a PLOT column to resolve \(N_2\) from any \(CO\) formed by poor combustion [142]. If \(CO\) were permitted to enter the ion source simultaneously with \(N_2\), this would result in a serious isobaric interference at \(m/z\) 28. For \(\delta^{15}N\) values of rBDMS derivatives of amino acids, they reported a precision of S.D. \((\delta^{15}N) = 5\%e\) at natural abundance level.

In the same year, Merritt and Hayes presented a similar system but for the addition of a reduction furnace, loaded with Cu wires and maintained at a temperature of 600°C, to reduce N-oxides to \(N_2\) and to scavenge \(O_2\) emanating from the combustion furnace [143]. Their system also included a cryogenic trap to remove \(CO_2\) and water, and it produced a precision of S.D. \((\delta^{15}N) = 0.2\%e\).

This marked difference in precision was attributed to different performances of the IRMS systems. Ongoing investigations in our laboratory seem to indicate that this difference might be caused by the simultaneous presence of NO and \(N_2\) in the ion source. Placing a PorAPlot Q capillary column of 0.32 mm internal diameter, maintained at 30°C between the water trap and the ion source, separates \(N_2\) from NO (Fig. 5). Comparing precision for \(\delta^{15}N\) analysis of identical aliquots from the same sample with and without the PLOT column in place, we found a drop in precision from S.D. \((\delta^{15}N) = 0.15\%e\) to S.D. \((\delta^{15}N) = 2\%e\), respectively. This phenomenon cannot be explained by isobaric interference of NO and, in the case of amino acids, the formation of one \((m/z\) 30) with \(m/z\) 28 (\(^{14}N_2\)) or \(m/z\) 29 (\(^{15}N^{14}N\)) but might be caused by reaction of NO with \(N_2\) in the ion source.

To avoid potential isotopic fractionation due to various degrees of nitrogen silylation when TMS derivatives were formed, Hoffmann et al. prepared rBDMS derivatives of amino acids from wheat protein hydrolysate [144]. The same strategy was followed by Segschneider et al. when investigating \(^{15}N\) uptake from \(^{15}N\)-labelled NO\(_2\) by measuring \(\delta^{15}N\) values of soluble amino acids in sunflower leaves [145]. However, when preparing rBDMS derivatives, one has to bear in mind that in the case of, e.g., \(L\)-leucine, one adds 12 mol equivalent of carbon to 1 mol equivalent of amino acid, thus resulting in 36 mol equivalent of carbon for 1 mol equivalent of \(N_2\), which might give rise to CO formation due to poor combustion. Metges et al. reported an alternative derivatisation protocol for amino acids yielding \(N\)-pivaloyl, \(O\)-isopropylates, and demonstrated their application by measuring NA
\( \delta^{15}N \) values of amino acids from plasma albumin hydrolysate [146].

CSIA of \(^{15}N\) isotopic abundance by GC–C–IRMS has been applied to measure the effect of ibuprofen on protein synthesis using \(^{15}N\)-labelled glycine as tracer [147]. Williams et al. used \(^{15}N\)-labelled urea to demonstrate that Helicobacter pylori uses urea as a nitrogen source for its synthesis of amino acids [148]. A multidisciplinary group comprising environmental, archaeological, geological and nutritional scientists showed that differences in \( \delta^{15}N \) values from soil amino acids could be used to indicate differences in land use in Bronze Age, medieval and early modern soils [149]. One intriguing observation they made was the consistently low levels of \(^{15}N\) abundance (\( \delta^{15}N < 0.0\%e \) vs air) in the amino acids threonine (Thr) and phenylalanine (Phe) from soils of unmanured cereal production sites, whereas \( \delta^{15}N \) values of all the other amino acids were positive. We thought this was intriguing because a similar pattern was found by Metges and Petalec when monitoring \( \delta^{15}N \) values of free plasma amino acids from fasting human subjects. With the exception of Thr and Phe, all other amino acids showed positive \( \delta^{15}N \) values [150].

Mas et al. suggested that \( \delta^{15}N \) values of MDMA (ecstasy) could be used for batch discrimination of ecstasy tablets [61], and Faulhaber et al. used \( \delta^{15}N \) values of methyl-N-methylantranilate as a biomarker in the authenticity control of mandarin oils [43]. Last, but not least, GC–IRMS was used for measuring \( \delta^{15}N \) values of \( N_2 \) and \( N_2O \), separated from the same sample [151,152].

5. Hyphenated techniques

In recent years, the research efforts of different groups working in the field of GC–IRMS have focused on extending the scope of on-line CSIA towards the measurement of organic \(^{18}O/^{16}O\) and organic \(^2H/^{1}H\) isotope ratios. Consequently, research
was undertaken with the aim of high-precision measurement of two different elemental isotope ratios such as $^2$H/$^{18}$O, $^{13}$C/$^{18}$O and $^{13}$C/$^{15}$N, from the same compound source in one analytical run.

By placing a PORA PLOT Q capillary column between the combustion reactor and the IRMS (which enabled us to separate N$_2$ from CO$_2$ by 100 s baseline to baseline), $^{15}$N/$^{14}$N and $^{13}$C/$^{12}$C isotope ratio from alanine, leucine and phenylalanine could be measured in one single analysis [153]. The excellent separation of N$_2$ from CO$_2$ provided ample time to switch IRMS ion source parameters from N$_2$- to CO$_2$-mode (Fig. 6).

In 1994, using a GC-based IRMS system, Brand et al. showed that CSIA of $^{18}$O/$^{16}$O ratios was possible by converting oxygen-containing organic compounds on-line to CO by means of a pyrolytic reaction [154]. The on-line coupling of GC and IRMS via a pyrolysis interface (GC-Py-IRMS) was used for the simultaneous determination of $\delta^{13}$C and $\delta^{18}$O values for vanilla from different origins [155]. Farquhar et al. converted bulk plant matter into N$_2$ and CO by an automated on-line pyrolysis-based reaction using nickelized carbon at about 1100°C and separating N$_2$ from CO post-pyrolysis in a GC fitted with a 5-Å molecular sieve PLOT column [156].

Independently, Begley and Scrimgeour reported on high-precision $\delta^2$H and $\delta^{18}$O measurement for water and VOCs by using 20% nickelized carbon to generate both H$_2$ and CO at temperatures of between 1050 and 1100°C [157]. Precisions were S.D. ($\delta^2$H)=2%$_e$ and S.D. ($\delta^{18}$O)=0.3%$_e$ for samples ranging from urine, water and VOCs. Their pyrolysis system was based on earlier work that was aimed at simultaneous $\delta^2$H and $\delta^{18}$O determination from small water and urine samples (0.5 µl) [158]. Common to both studies was the use of a novel IRMS with the high dispersion necessary for separation of the $^2$H$^+$ and $^3$He$^+$ ion beams. This novel high mass dispersion IRMS has been described in detail by Prosser and Scrimgeour [159]. Very recently, this high mass dispersion IRMS was coupled to a

![Graph](image-url)

Fig. 6. Dual isotope measurement of $\delta^{15}$N and $\delta^{13}$C from alanine (as N-acetyl, O-propyl derivative) during the same analysis. The arrow indicates when the ion source parameters were switched from nitrogen mode ($m/z$ 28) to carbon dioxide mode ($m/z$ 44). A 100-s baseline to baseline separation of N$_2$ from CO$_2$ was achieved by passing the combustion products past-reduction through a PORA PLOT Q column, held at 35°C. The results obtained from dual-isotope analyses ($\delta^{15}$N, $-7.78\pm0.10%e$ vs air; $\delta^{13}$C, $-40.22\pm0.14%e$ vs PDB) were in good agreement with those obtained from separate analyses ($\delta^{15}$N, $-7.86\pm0.38%e$ vs air; $\delta^{13}$C, $-40.20\pm0.21%e$ vs PDB).
GC via a pyrolysis interface including a 5-Å molecular sieve PLOT column to achieve CSIA for δ²H of fatty acids. Preliminary δ²H values for 16:0 and 18:1 fatty acids (as methyl esters) from tuna oil given in a Technical Brochure were −148.5±4.1 and −155.3±1.0‰ (vs. VSMOW), respectively [160].

A different approach to CSIA for H of organic compounds such as ethyl benzene and cyclohexanone was published by Tobias and Brenna. Initially using a two-stage reactor interface (CuO at 850°C followed by Ni held at 950°C) [161] they found that better precision for δ¹³C was achieved by employing an empty alumina tube held at about 1150°C [162]. Because their IRMS was not capable of fully resolving analyte δ¹³C from excess ³He carrier gas, they used a heated Pd filter in conjunction with a make-up pressure unit to prevent ³He from entering the IRMS while selectively admitting only hydrogen through the Pd foil membrane into the ion source [163].

The measurement of intramolecular variations in isotopic abundance due to kinetic isotope effects during biosynthesis is another recent development to extend the scope of GC–IRMS. The group around Schmidt employed ¹³C isotope pattern analysis for distinction of natural compounds from corresponding synthetic products [53,164]. In 1997, an on-line pyrolysis system for position-specific isotope analysis (PSIA) of selected compounds from a complex mixture was described in detail by Corso and Brenna [165]. They coupled a GC (GC-1) for sample separation prior to pyrolysis to the GC (GC-2) separating pyrolytic products of the selected sample compound. Furthermore, they installed a valve into GC-2 to permit separated pyrolysis fragments to be admitted to an organic MS for structure analysis of these fragments.

6. Conclusions

Despite recent advances, many fundamental challenges for improved instrumentation still remain, most notably developments leading to (a) quantitative sample conversion to achieve high-precision CSIA for nitrogen; (b) routine CSIA of hydrogen isotopes after gas chromatographic separation; and (c) the routine application of PSIA to detect intramolecular isotope patterns. Continuing improvements in accuracy, precision and abundance sensitivity of GC–IRMS, accompanied by increased user-friendliness, will ensure that this technique will cement its role as an important and unique tool of analytical mass spectrometry.

The sheer number of applications, as well as their wide spectrum clearly demonstrates that state-of-the-art GC–C–IRMS instruments are already powerful tools providing quantitative and qualitative information that cannot be obtained by other means.

Acknowledgements

The author gratefully acknowledges financial support through an industrial grant awarded by Europa Scientific Ltd (Crewe, UK). Many thanks are due to Professor Michael J. Rennie for advice and helpful discussions. The author is indebted to Dr Helen F Kemp for critical reading of the manuscript.

References


