Individual Differences in Schizotypal Personality Traits and Dopamine Release

Neil D. Woodward, Ph.D.

Psychiatric Neuroimaging Program
Vanderbilt University School of Medicine

www.woodwardlab.com

65th Annual Meeting of the Society of Biological Psychiatry
New Orleans, May 20-22, 2010
Acknowledgements

David Zald
Robert Kessler
Ronald Cowan
Sohee Park
M. Sib Ansari
Rui Li
Ashley Schwartzman
Ron Baldwin
Mikisha Doop

Funding Sources
NIMH
NIDA
Disclosure

Relevant Financial Relationship(s)
None

Off-Label Usage
None
Schizotypal Personality Traits

• Schizotypal personality traits include:
 – Unusual perceptual experiences/odd beliefs
 – Paranoid ideation
 – Disorganized thoughts and behaviors
 – Excessive social anxiety and withdrawal

• Continuously distributed within general population
 – Isolated, odd beliefs=benign
 – Excessive levels associated with psychosocial dysfunction
 and Schizotypal Personality Disorder (SPD)

• ‘Normal’ variation in schizotypal traits associated
 with social adjustment and distress
Schizotypal Personality Traits and Schizophrenia Spectrum Disorders

- Variation in schizotypal traits organized into 3-4 factors:
 - Cognitive-perceptual/paranoid
 - Negative
 - Disorganized factors

- Pre-morbid personality in schizophrenia marked by an excess of schizotypal traits

- SPD is a risk factor for schizophrenia

- Covairates of schizotypal traits:
 - Deficits in sustained attention, working memory, sensory gating, and possibly eye movements
 - Low birth weight, low childhood SES, autumn/winter birth
Neural Correlates of Individual Differences in Schizotypy are Poorly Understood

- May relate to dopamine transmission

- Positron Emission Tomography (PET) imaging with dopamine receptor radioligands
 - Can be used to investigate dopamine function/dysfunction
 - PET imaging with displaceable ligands can be used to measure evoked dopamine release
 - Striatum: 11C-Raclopride, 123I-IBZM
 - Striatum + Extra-striatum: 18F-Fallypride

- PET studies in SPD and schizophrenia have revealed abnormalities in pre-synaptic dopamine function
Imaging Dopamine Release with PET

PRE-Synaptic

Baseline

POST-Synaptic

Amphetamine

Dö/D3 Receptor

Dopamine

Radio-labeled ligand

Binding Potential (BP)

↓BP
Imaging Dopamine Release with PET

PRE-Synaptic

Baseline

POST-Synaptic

Amphetamine

\[\downarrow \text{BP} \]
Imaging Dopamine Release with PET

PRE-Synaptic

Amphetamine

POST-Synaptic

Baseline

\[\text{D}_2/\text{D}_3 \text{ Receptor} \]

\[\text{Dopamine} \]

\[\text{Radio-labeled ligand} \]

Binding Potential (BP)

\(\downarrow \text{BP} \)
Striatal Dopamine Release is Elevated in Schizotypal Personality Disorder and Schizophrenia

Abi-Dargham et al. 2004; Laruelle et al. 1999
Striatal DA Release Correlates with Transient Increase in Positive Symptoms in Schizophrenia

- State component to increased dopamine release
- Not observed in SPD
 - Trait component?

Laurelle et al., 1999
Individual Differences in Schizotypy and Dopamine Release

• Evidence of an association between schizotypal traits and dopamine release would further support a trait basis for hyper-dopaminergia in schizophrenia

• Is dopamine release in extra-striatal brain regions related to schizotypy?
 • Indirect evidence in schizophrenia that extra-striatal dopamine function relevant to clinical symptoms
 • PET studies of dopamine release in SPD and schizophrenia have been restricted to striatum
Methods

• 49 Subjects (25 Men; Mean age=23.4±3.8)
 – No history of psychiatric disorder, substance abuse

• Subjects completed the Schizotypal Personality Questionnaire (SPQ) prior to scans

• Subjects scanned twice with 18F-fallypride
 – Baseline (34 subjects blind to drug administration)
 – 3.5 hrs after oral amphetamine (0.43 mg/kg)
D-Amphetamine Induced Dopamine Release Measured with 18F fallypride
Regions of Interest (ROIs)

- Whole Striatum
- Striatum functional sub-divisions:
 - Limbic/Ventral
 - Associative
 - Sensorimotor
- Additional ROIs
 - Thalamus
 - Hippocampus
 - Amygdala
Schizotypal Traits Correlate with Dopamine Release in the Striatum: ROI Results

* 1-tailed partial correlation after controlling for age, gender, and cohort

\[r = 0.25, p < 0.05^* \]

\[r = 0.29, p < 0.05^* \]
Schizotypal Traits Correlate with Dopamine Release in the Striatum: ROI Results

<table>
<thead>
<tr>
<th>Sub-Division</th>
<th>Correlation*</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Ventral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>left</td>
<td>.22</td>
<td>.074</td>
<td></td>
</tr>
<tr>
<td>right</td>
<td>.27</td>
<td>.035</td>
<td></td>
</tr>
<tr>
<td>Associative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>left</td>
<td>.23</td>
<td>.060</td>
<td></td>
</tr>
<tr>
<td>right</td>
<td>.30</td>
<td>.022</td>
<td></td>
</tr>
<tr>
<td>Sensorimotor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>left</td>
<td>.22</td>
<td>.067</td>
<td></td>
</tr>
<tr>
<td>right</td>
<td>.18</td>
<td>.119</td>
<td></td>
</tr>
</tbody>
</table>

* 1-tailed partial correlation after controlling for age, gender, and cohort
Schizotypal Traits Correlate with Dopamine Release in the Striatum: Voxel-wise* Results

* Corrected for whole striatum volume
Schizotypal Traits Correlate with Dopamine Release in the Striatum: Voxel-wise* Results

* Corrected for whole striatum volume
Schizotypal Traits Correlate with Dopamine Release in Extra-Striatal ROIs

<table>
<thead>
<tr>
<th>ROI</th>
<th>Correlation*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
</tr>
<tr>
<td>Amygdala</td>
<td></td>
</tr>
<tr>
<td>left</td>
<td>.34</td>
</tr>
<tr>
<td>right</td>
<td>.23</td>
</tr>
<tr>
<td>Hippocampus</td>
<td></td>
</tr>
<tr>
<td>left</td>
<td>.07</td>
</tr>
<tr>
<td>right</td>
<td>.08</td>
</tr>
<tr>
<td>Thalamus</td>
<td></td>
</tr>
<tr>
<td>left</td>
<td>.27</td>
</tr>
<tr>
<td>right</td>
<td>.29</td>
</tr>
</tbody>
</table>

* 2-tailed Partial correlation after controlling for age, gender, and cohort
Extra-striatal Dopamine Release Correlates with Schizotypal traits: Voxel-wise* Results

* Whole brain corrected (p<.05 cluster level corrected)
SPQ Factor Scores and Dopamine Release

Schizotypal Personality Questionnaire Factor Scores

<table>
<thead>
<tr>
<th>Schizotypal Personality Questionnaire Factor Scores</th>
<th>Cognitive-Perceptual</th>
<th>Paranoid</th>
<th>Negative</th>
<th>Disorganized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>p</td>
<td>r</td>
<td>p</td>
</tr>
<tr>
<td>Whole Striatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>left</td>
<td>.04</td>
<td>.794</td>
<td>.20</td>
<td>.174</td>
</tr>
<tr>
<td>right</td>
<td>.05</td>
<td>.720</td>
<td>.19</td>
<td>.204</td>
</tr>
<tr>
<td>Ventral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>left</td>
<td>-.01</td>
<td>.969</td>
<td>.12</td>
<td>.444</td>
</tr>
<tr>
<td>right</td>
<td>.00</td>
<td>.995</td>
<td>.22</td>
<td>.146</td>
</tr>
<tr>
<td>Associative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>left</td>
<td>.11</td>
<td>.476</td>
<td>.20</td>
<td>.190</td>
</tr>
<tr>
<td>right</td>
<td>.08</td>
<td>.610</td>
<td>.21</td>
<td>.167</td>
</tr>
<tr>
<td>Sensorimotor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>left</td>
<td>-.03</td>
<td>.834</td>
<td>.20</td>
<td>.175</td>
</tr>
<tr>
<td>right</td>
<td>.04</td>
<td>.782</td>
<td>.07</td>
<td>.668</td>
</tr>
<tr>
<td>Extra-Striatal ROIs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amygdala</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>left</td>
<td>.21</td>
<td>.172</td>
<td>.24</td>
<td>.110</td>
</tr>
<tr>
<td>right</td>
<td>.09</td>
<td>.549</td>
<td>.23</td>
<td>.126</td>
</tr>
<tr>
<td>Hippocampus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>left</td>
<td>.00</td>
<td>.990</td>
<td>.14</td>
<td>.347</td>
</tr>
<tr>
<td>right</td>
<td>-.08</td>
<td>.602</td>
<td>.12</td>
<td>.431</td>
</tr>
<tr>
<td>Thalamus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>left</td>
<td>.11</td>
<td>.462</td>
<td>.25</td>
<td>.095</td>
</tr>
<tr>
<td>right</td>
<td>.13</td>
<td>.392</td>
<td>.23</td>
<td>.131</td>
</tr>
</tbody>
</table>
Disorganized Schizotypal Traits Correlate with Dopamine Release in the Striatum: ROI Results

![Graphs showing correlation between SPQ: Disorganized Factor Score and Striatum DA Release](image)

- Left Striatum DA Release (R² Linear = 0.994)
- Right Striatum DA Release (R² Linear = 0.143)
Disorganized Schizotypal Traits Correlate with Dopamine Release: Voxel-wise* Results

* Whole Brain Corrected (p<.05 cluster level)
Disorganized Schizotypal Traits Correlate with Dopamine Release: Voxel-wise* Results

* Whole Brain Corrected (p<.05 cluster level)
Conclusions

• Amphetamine induced dopamine release correlates with individual differences in schizotypal traits

• Relationship observed in individuals with relatively low SPQ scores
 – Consistent with studies of cognition and sensory gating
 – Magnitude of correlation also consistent with other studies (r=.30 to .50)

• Association is independent of other personality characteristics including:
 – Extraversion
 – Novelty Seeking
 – Sensation Seeking
Limitations

• Modest levels of schizotypal traits
 – Replication in sample with higher level of schizotypy

• Lack of interview based measure of schizotypal traits
 – Sensitivity?

• State measures of psychotic-like symptoms
 – paranoia
Implications

• Further support for a trait component to hyper-dopaminergia in schizophrenia spectrum disorders

• Consistent with evidence of elevated pre-synaptic dopamine synthesis in:
 – Prodromal subjects
 – Unaffected siblings of schizophrenia patients
State and Trait Basis to Hyper-Dopaminergia

Data from Abi-Dargham et al., 2004 & Laruelle et al., 1999
Future Directions

• Implications for a psychosis continuum?

• Hyper-dopaminergia as an endophenotype of psychosis liability
 – Schizophrenia risk genes and dopamine release

• Cognitive disorganization and dopamine function
 – SPQ disorganized questions may be tapping subtle cognitive impairments
 – Frontal lobe function and striatal dopamine signaling

• Extra-striatal dopamine release in schizophrenia spectrum disorders