Common Abdominal Emergencies in Pediatrics

Ultrasound Diagnosis

No Conflicts of Interest to Disclose

Infantile Hypertrophic Pyloric Stenosis (IHPS)
Malrotation
Intussusception
Appendicitis

Objectives

At the conclusion of this discussion, attendees will:

- Be able to accurately diagnose IHPS vs normal pylorus
- Understand the role of US vs. UGI in the diagnosis of malrotation and volvulus
- Understand the ultrasound diagnosis of intussusception
- Differentiation of small vs. large bowel, unusual presentations
- Understand the role of US in the evaluation and diagnosis of appendicitis in the pediatric patient

IHPS

Familiar to every pediatric radiologist

2-5: 1000 births

- 500 visits per year
- 40 visits per month
- 4 visits per week

IHPS: anatomy & definition

- Thickened, UNRELAXING pyloric muscle
- Thickening and edema of mucosa

IHPS: historical perspective

- Virtually unknown prior to 1627
- 1627 Fabricius Hildanus
 - First reported case with survival
- 1788 Hezikiah Beardsley
 - First reported case in North America
- 1799 Michael Underwood – postmortem description
- 1841 Thomas Williamson – postmortem description
- 1842 Siemon-Dawosky – postmortem description
 - Includes "hypertrophy of submucous cellular tissue"
Common Abdominal Emergencies in Pediatrics

IHPS: historical perspective

- 1887: Pediatric Congress, Wiesbaden, Germany
 - Harald Hirschsprung: 2 infant girls
 - Rigorous postmortem description of two cases

- Published 1888:
 - Falle von angeborener pylorusstenose, beobachtet bei sauglingen; Jahrb der Kinderh 27:61-68

Percent mortality in infants with Pyloric stenosis

- Year vs. Mortality

Common Abdominal Emergencies in Pediatrics

IHPS: diagnosis

Palpation
- Accurate?
- Surgeons: Sensitivity: 31-100%; Specificity: 85-99%
- Non-surgeons: Sensitivity: 26 - 47%
- Noninvasive?
 - No need to further distend stomach
 - No radiation exposure
- Rapid?
 - No need to wait until stomach empties
 - No need to empty the stomach
 - No need to have a calm infant

Ultrasound
- Accurate?
- Sensitivity: 97-100%; Specificity: 99 - 100%
- Noninvasive?
- No need to further distend stomach
- No radiation exposure
- Rapid?
- No need to have a calm infant

Common Abdominal Emergencies in Pediatrics

IHPS: normal anatomy

- Pyloric antrum = 2.5 cm in length
- Terminates at pyloric sphincter/orifice

Common Abdominal Emergencies in Pediatrics

IHPS: abnormal anatomy

- Pyloric antrum is abnormal
 - thickened muscle
 - thickened mucosa

H. Mark, 1903
Bulletin of the History of Medicine

Percent mortality in infants with Pyloric stenosis

- Year vs. Mortality

Pyloric antrum ~ 2.5 cm in length
Terminates at pyloric sphincter/orifice

No need to further distend stomach
No radiation exposure
Rapid?
Common Abdominal Emergencies in Pediatrics

IHPS

Ultrasound: technique
- Warm room
- Warm gel
- Scan infant under blankets
- Pacifier soaked in D5W

IHPS

- 6-7 MHz long footprint linear transducer
- Patient positioned to bring pylorus into view
 - begin with patient supine
 - turn to right slowly if need to bring fluid to antrum
 - turn to left slowly if pylorus tucked behind distended stomach

IHPS: ultrasound characteristics
- Thickened muscle ≥ 3mm
- Thickened mucosa
- Usually hyperemic
- Dimensions may change during study
- IHPS is NOT a complete obstruction

Mucosal hypertrophy:

Ultrasound
- Mucosa fills pyloric channel
- protrudes into antrum: “nipple sign”

IHPS: ultrasound characteristics
- Mucosal hypertrophy
 - nipple sign
 - double track sign
Ultrasound

Pyloric stenosis: thickened muscle, mucosa

3.6mm; 10.7mm

Mucosal hypertrophy:

- Endoscopy
 - Mucosa protrudes through pyloric channel into antral lumen

Common Abdominal Emergencies in Pediatrics

IHPS: pitfalls

PROBLEM
- Failure to visualize the pylorus
 - Overdistended stomach
 - Pylorus tucked behind stomach

SOLUTION
- Turn infant to the left, allowing pylorus to rise anteriorly

Common Abdominal Emergencies in Pediatrics

Normal pylorus: ultrasound characteristics

- Muscle at rest < 2mm
- Dimensions may change during study
 - May need observation
 - Turn patient, Add fluid
 - The stomach may or may not empty during

Common Abdominal Emergencies in Pediatrics

Normal pylorus: pitfalls

PROBLEM
- Borderline measurements
 - empty stomach
 - collapsed antrum

SOLUTION
- Turn infant to the right
 - Give fluid (e.g., Pedialyte D5W)

Common Abdominal Emergencies in Pediatrics

Normal pylorus: pitfalls

PROBLEM
- Borderline measurements
- punishable

SOLUTION
- Watch!
Normal pylorus: pitfalls

- Beware the GE junction

Unsure rate of evolution of pyloric stenosis
- Unknown whether pylorospasm (failure of antropyloric portion of the stomach to relax, with muscle thickness < 3mm)
 - is self-resolving in some
 - develops into pyloric stenosis in others

IHPS - Questions

- 6/145 consecutive patients had borderline muscle thickness ≥ 2 < 3mm
 - 2/6 developed pyloric stenosis two weeks later
- 7/152 with borderline muscle thickness
 - none developed pyloric stenosis
- 1/75 patients developed pyloric stenosis between 2 weeks of age (intermittent opening, 2.8mm) and 7 weeks (no opening, 3.5mm)

IHPS: Questions

- What happens if US is negative?
 - Reflux
 - Document
 - Treat
 - Duodenal stenosis

IHPS: Questions

- 2 wks; 1.7mm
- 4 wks; 2.8mm
- No opening
- 6 wks; 2.8 – 3.5mm
- Intermittent opening

MALROTATION
Malrotation = Incomplete Rotation

Malrotation = Incomplete Rotation
= Spectrum

Malrotation = Incomplete Rotation

Malrotation - Ischemia

Malrotation – Clinical presentation

80% present in the first month of life
90% within the first year

- Acute Obstruction
- Vascular compromise

- Bilious vomiting
- Abdominal distension
- Hematochezia
- Hematemesis

Common Abdominal Emergencies in Pediatrics

Duodenojejunal Junction (DJJ)

Normal Rotation

0°
90°
180°
270°

Malrotation

= Incomplete Rotation

Common Abdominal Emergencies in Pediatrics

Malrotation = Incomplete Rotation

Cecal Loop

0°
90°
180°
270°

Acute Obstruction
Vascular compromise
Malrotation – Clinical presentation

- Older patients
 - Recurrent vomiting
 - Recurrent abdominal pain
 - Failure to thrive
 - Malabsorption

Malrotation – Diagnosis

Upper GI: Gold Standard (?)
- Detection of Malrotation
 - Sensitivity 93 – 100%
 - Lateral view
 - Sensitivity 96%
- Detection of volvulus
 - Sensitivity 54%
 - Specificity 88%

Meticulous technique:
- First pass
- Gastric emptying is variable
- Duodenal emptying is variable
- Gastric overdistension with contrast

Ultrasound
- Reversal of SMA / SMV relationship
 - Sensitivity: 66 – 71%
 - Specificity: 89 – 92%
- Whirlpool sign: volvulus
 - Twist of duodenum and SMV around SMA
 - Sensitivity: 83 – 92%
 - Specificity: 92 – 100%
- Dao, Beydoun, Youssfi
 - 245 studies; 100% Sensitivity & Specificity
 - SPR 58th annual meeting, April 2015
Malrotation – Diagnosis

Case history:
- 8 year old boy
- long history of failure to thrive
- recent 14 pound weight loss
- recent diagnosis of “sprue”
- on gluten-free diet

Malrotation

INTUSUSCESSION

Intussusception
Common Abdominal Emergencies in Pediatrics

Intussusception

ULTRASOUND
- Diagnosis
- Tailoring management
 - Sensitive – 100%
 - Specific – “89%”
 - BOWEL - WITHIN - BOWEL

Intussusception

ULTRASOUND
- TECHNIQUE
 - Curvilinear transducer for bird’s eye view
 - Linear transducer for focused evaluation of
 - bowel-within-bowel
 - trapped fluid
 - lead points

Intussusception

ULTRASOUND
- Increased reduction failure
 - Age < 3 months
 - Duration > 48 hours
 - small bowel obstruction
 - Hematochezia
 - Fluid within the intussusceptum complex
 - Diminished or absent flow to complex

Intussusception

- 6 months – 2 years
 - Ileocolic, idiopathic
- Lead points
 - < 2-3 months - duplication cyst, Meckels
 - > 5 years – lymphoma - Burkitt

Intussusception- lead points
- Duplication cyst
- Burkitt lymphoma
Intussusception – small bowel

INCONSEQUENTIAL
- Asymptomatic
- < 3 cm wide
- < 3 cm long
- No obstruction
- Active peristalsis

APPENDICITIS

Most common childhood surgical condition
- 80% of pediatric surgical emergencies
- Greatest in second decade
- Rare in young children
- Neonates- appendiceal perforation may be a presentation of long-segment Hirschsprung disease

Appendicitis – Pediatric Challenges
- Young children unable to verbalize symptoms
- Presentation atypical in 30-45%
- Perforation rates
 - adults 16-39%
 - children 23-73%
 - infants 62- 88%
- as high as 100% in infants < 1 year
Appendicitis – Diagnosis

- Physical examination
 - Typical findings
 - Atypical findings

Appendicitis – Ultrasound

- Sensitivity
 - Approximately 40-100%
- Specificity
 - Approximately 40-95%

How to do it?
- High frequency LINEAR transducer
 - graded compression
 - Gentle and STEADY pressure
 - Upward direction
 - empty bladder
 - visualize psoas
- CALM INFANT
 - Crying prevents successful compression
 - Toys, videos

Visualization is variable
- 5 – 50%
- ENTIRE appendix MUST be visible
 - Base and length may be normal
 - Tip may be hidden by overlying gas

Find liver and right kidney
- Identify ascending colon
 - noncompressible bowel gas?
- Follow ascending colon
 - identify terminal ileum
- Search for appendix
 - cecal tip, retrocecal area, iliac fossa

Normal appendix
Appendicitis – Ultrasound

Abnormal appendix
- >6mm outer-wall-to-outer-wall during compression
- Periappendiceal echogenicity
- Increased flow
- May not be present if necrosis has supervened

False positive
- Borderline appendix size
- Loop of bowel mistaken for appendix
 - Need to confirm blind-ending structure
 - Origin from cecal tip if possible
 - Identify terminal ileum separately

False negative
- No appendix identified
 - Hidden by bowel gas or bone
- Normal appendix identified at cecal pole
 - Inflamed appendiceal tip elsewhere
 - Loop of bowel mistaken for “normal” appendix

Common Abdominal Emergencies in Pediatrics

Thank you for your attention