Drug Interactions in the Transplant Patient

Jennifer N. Gray, Pharm.D.
Nurse Practitioners Symposium
Nashville, TN
October 16th, 2014
Objectives

1.) Discuss the CYP 450 enzymes and common drug interactions with the immunosuppressants

2.) Identify pertinent drug-drug interactions in transplant patients

3.) Recommend dose adjustments and/or alternative therapies when appropriate

4.) Review patient case
Patient Case

• 30 year old female s/p DLTx in April 2014
 – Tacrolimus 1mg twice daily
 • Levels have been stable between 10-12ng/mL
 – Mycophenolate mofetil 1000mg twice daily
 – Prednisone 5mg once daily
 – TMP/SMX DS 1 tablet daily Mon, Wed, and Fri
 – Itraconazole suspension 20mls twice daily
 – Lisinopril 5mg daily
 – Escitalopram 10mg daily at bedtime
Hospital Rounds

- 30 year old female s/p DLTx in April 2014
 - The patient is admitted to the hospital with elevated LFTs and nausea/vomiting
 - The team wants to stop the *Itraconazole suspension 200mg twice daily*

WHAT DO YOU RECOMMEND?
Clinic Follow-up

• 30 year old female s/p DLTx in April 2014
 – Patient has been put on Voriconazole
 – Returns to clinic 1 week after starting therapy

• Tacrolimus level is now 18.3ng/mL and the patient’s SCr and K+ are elevated

WHAT DO YOU RECOMMEND?
Clinic Follow-up

- 30 year old female s/p DLTx in April 2014
 - The patient had completed the course of voriconazole
 - The patient returns to clinic and is now hypertensive

- Initially, the MD wants to add **Diltiazem 180mg twice daily**

WHAT DO YOU RECOMMEND?
CAVEAT....

• This talk will *not* cover a complete list of drug interactions

• Highlighting those interactions that are most often encountered in daily practice

• Consistent evidence for a stepwise approach for the management of drug interactions is not always available
 – Often you will need to work within center protocols and trust experience
Quick History Review

- Drug interactions reported in the literature since the beginning of cyclosporine utilization
 - 1986: Erythromycin and cyclosporine
 - Early 1990’s: Ketoconazole and cyclosporine
 - 1993: Grapefruit interaction with cyclosporine

- A book called “Drug Interactions” went to press 35yrs ago and contained a few hundred drug interactions
 - Today, the book is called “Drug Interactions Analysis and Management” and contains thousands of interactions

Unfortunately….

• The likelihood of a drug interaction increases with the number of medications a patient is taking

• Interactions are unavoidable for transplant patients
 – Routinely use medications that interact
 – Polypharmacy is an everyday part of a transplant patients regimen
 – Occasionally, medications are used because of their interaction
 – Newly approved medications can present a problem

What is your opinion?

A.) I never see drug interactions in my transplant patients

B.) I dislike drug interactions and hope that I don’t have to deal with them much or at all

C.) I am good at managing the main interactions, the new drugs/less well known interactions make me nervous

D.) I let my transplant pharmacist deal with interactions….they seem to like manage them or maybe they just make things up.
Factors That Contribute to Drug Interactions

• **Time course of drug interactions**
 – Important for patient monitoring of levels

• **Determinants of time course**
 – Half lives of drugs
 – Drug dosage
 – Route of Administration
 – Metabolites
 – Pharmacodynamics

- Pharmacokinetics
- Enzyme Interactions
- Genetics
- Plasma Protein Binding

Factors That Contribute to Drug Interactions

• Drug interactions occur during the absorption of drugs in the gastrointestinal tract
 – Site of absorption
 • Small intestine is the primary site
 – Rate and extent of Absorption
 – Drug binding in the GI tract
 – Alterations in GI motility/pH
 – Intestinal flora
Drug interactions: CYP Enzymes

Proportion of Drugs Metabolized by P450 Enzymes

- CYP2D6: 19%
- CYP1A2: 11%
- CYP2C19: 8%
- CYP2C8/9: 16%
- CYP2B6: 3%
- CYP2E1: 4%
- CYP3A4/5: 36%

What are the CYP 3A4 enzymes?

• CYP stands for Cytochrome
 – Membrane associated proteins

• Family 3, subfamily A, polypeptide 4

• CYP enzymes are found predominantly in the liver and aid in the metabolism of drugs
 – Estimated that CYP3A4 metabolizes about half of all drugs on the market
 – Metabolize thousands of endogenous and exogenous chemicals

What are Inducers?

- **INDUCER**: Increases the number of enzymes available for metabolism
 - May increase the metabolism of substrates
 - Leads to a decreased drug effect

<table>
<thead>
<tr>
<th>CYP450 3A4 Inducers</th>
<th>Inducers DECREASE Tacrolimus/Cyclosporine Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-convulsants</td>
<td>Anti-tuberculosis Agents</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>Rifampin</td>
</tr>
<tr>
<td>Phenobarbital</td>
<td>Rifabutin</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>Isoniazid</td>
</tr>
<tr>
<td>Anti-biotics</td>
<td>Others</td>
</tr>
<tr>
<td>Nafcillin</td>
<td>Ticlopidine</td>
</tr>
<tr>
<td></td>
<td>St. Johns Wart</td>
</tr>
<tr>
<td></td>
<td>Sirolimus (FK)</td>
</tr>
<tr>
<td></td>
<td>Caspofungin (FK)</td>
</tr>
</tbody>
</table>
What are Inhibitors?

• **INHIBITOR:** Decreases the activity of the enzyme

 – May decrease the metabolism of substrates

 – Competition for enzyme binding site

 – Leads to an increased drug effect
CYP450 3A4 Inhibitors

Inhibitors INCREASE Tacrolimus/Cyclosporine Levels

<table>
<thead>
<tr>
<th>Calcium Channel Blockers</th>
<th>Anti-arrhythmic Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diltiazem</td>
<td>Amiodarone</td>
</tr>
<tr>
<td>Verapamil</td>
<td></td>
</tr>
<tr>
<td>Nicardipine</td>
<td></td>
</tr>
<tr>
<td>"Azole” Antifungals</td>
<td>Immunosuppressive Agents</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>Sirolimus (CyA)</td>
</tr>
<tr>
<td>Itraconazole</td>
<td></td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>Protease Inhibitors</td>
</tr>
<tr>
<td>Posaconazole</td>
<td>Saquinavir</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>Indinavir</td>
</tr>
<tr>
<td>"Mycin” Antibiotics</td>
<td>Nelfinavir</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>Ritonavir</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td></td>
</tr>
<tr>
<td>Food</td>
<td></td>
</tr>
<tr>
<td>Grapefruit</td>
<td></td>
</tr>
<tr>
<td>Blood Oranges</td>
<td></td>
</tr>
<tr>
<td>Pomegranate?</td>
<td></td>
</tr>
</tbody>
</table>
P-glycoprotein (P-gp)

- Expressed in certain cell types in the liver, pancreas, kidney, colon, and jejunum
 - Cell membrane-associated protein that transports a variety of drug substrates

- Immunosuppressants are substrates of P-gp
 - Substrates get transported back to intestinal lumen as they are absorbed
Individual Drug Interactions
AZOLE Anti-fungals

- Voriconazole (Vfend)
- Itraconazole (Sporanox)
- Ketoconazole (Nizoral)
- Posaconazole (Noxafil)
- Fluconazole (Diflucan)
Voriconazole: Points to Consider

• Second generation triazole antifungal agent
 – Activity against *Candida, Aspergillus* spp, *Fusarium* spp

• Bioavailability is ~90%
 – Rapid and complete absorption
 – Absorption not affected by antacids

• Half-life
 – Variable and dose dependent

• Therapeutic Drug Monitoring should be considered

Itraconazole: Points to Consider

SOLUTION

- Bioavailability is ~55%
- Absorption of solution is not affected by gastric pH
- Optimal absorption is on an empty stomach

CAPSULES

- Bioavailability is ~20%
- Absorption of capsules is enhanced by food and an acidic beverage
- Absorption of capsules is decreased when given with antacids
Posaconazole: Points to Consider

- Extended coverage including *Zygomycetes*
- Available as a suspension
- Food significantly increases the bioavailability
 - High fat meals had best systemic exposure
 - Should always be administered with meals

Fluconazole: Points to Consider

- Use is limited by narrow fungal coverage
 - Active against Candida species
 - Except C. Krusei and C. glabrata

- Undergoes little CYP-mediated metabolism
 - Less potent inhibitor than itra/vori
 - Doses of >200mg may be enough to inhibit CYP3A4 substrate clearance

What does all of this mean?
Vori/Itra and Tacrolimus Drug Interaction

- Most of the current data in lung and/or heart recipients
 - Case reports or retrospective data

- Kramer, et al. conducted a retrospective review of 60 lung tx pts
 - Tacrolimus dose reduction of 76% during itraconazole treatment and 64% during voriconazole treatment

- Capone, et al. noted the drug-drug interaction occurred within 2 days of starting itraconazole

Voriconazole and Sirolimus Drug Interaction

• Combination is not suggested per manufacturer recommendations

• Francisco et al, noted a 90% reduction was necessary
 - Achieved goal trough sirolimus levels without toxicity

• Case reports in 2 renal transplant recipients
 - Dose reductions of 75% and 87% were necessary to avoid toxic sirolimus levels

Recommended Immunosuppressant Dose Reductions

<table>
<thead>
<tr>
<th>Drug</th>
<th>Tacrolimus</th>
<th>Cyclosporine</th>
<th>Sirolimus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluconazole</td>
<td>40%</td>
<td>40%</td>
<td>50-70%</td>
</tr>
<tr>
<td>(Doses >200mg/day)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posaconzole</td>
<td>75-80%</td>
<td>~0-30%</td>
<td></td>
</tr>
<tr>
<td>Itraconazole</td>
<td>50-60%</td>
<td>50-60%</td>
<td></td>
</tr>
<tr>
<td>Voriconazole</td>
<td>66%</td>
<td>50%</td>
<td>90%**</td>
</tr>
</tbody>
</table>

Combination is not recommended per manufacturer recommendations

Individual Drug Interactions
Non-Dihydropyridine Calcium Channel Blockers

• Diltiazem
 – Tiazac, Cardizem CD, Cardizem LA, Dilacor XR

• Verapamil
 – Verelan, Calan SR, Covera
Diltiazem

• Often used as a first line agent, depending on organ group and indication
 – Dominant dilatory effect on afferent glomerular arteriole, where CNi vasoconstriction occurs

• High inter-patient variability

• ADEs of diltiazem often limit its use
 – Verapamil fallen out of favor due to ADEs

Diltiazem

- Diltiazem is a substrate for p-glycoprotein
- Has been shown to increase the tacrolimus concentrations by up to four-fold in animal models
 - Some case reports have reported a similar increase in humans
 - IV vs. Oral administration and dose make a difference

Diltiazem and Cyclosporine

- Determine if there was a relationship in diltiazem dose and blood concentration of CyA
 - Tested in renal transplant pts
 - Starting doses -- Diltiazem 30mg
 - Max dose tested was 180mg

- “Cyclosporine sparing effect was evident at doses of diltiazem lower than those currently used for the majority of transplant recipients”

Diltiazem and Cyclosporine

• “For transplant recipients receiving diltiazem in a dose >180mg per day, we recommend a cautious approach to dosage reduction”
 – Potential harm resulting from cyclosporine blood concentrations falling below the therapeutic range is significant

What does all of this mean?
Diltiazem...Things to Consider

• Consider diltiazem starting dose – Lower doses may not require a CNI dose reduction
 – Increasing the dose may increase immunosuppression levels over time
 – High inter-patient variability

• Brockmoller, *et al* suggest a 45% increased CyA concentration
 – Noted in 19 of 22 renal tx pts

• Drug monitoring is key

Individual Drug Interactions
Proton Pump Inhibitors (PPIs)
PPIs and Mycophenolate mofetil

• Current controversial topic
 – Conflicting findings within literature
 – Also conflicting data between different PPIs

• Gastroesophageal reflux disease is common s/p lung transplant
 – Estimated incidence nearly 75%¹

• Estimated that ~40% of heart recipients suffered from GI complaints
 – 86% of those pts were treated with a PPI²

Proton Pump Inhibitors Reduce MMF Exposure in Heart Transplant Recipients – A Prospective Case – Controlled Study

- Kofler, et al followed 22 heart tx recipients
 - All pts received MMF 1000mg twice daily and pantoprazole 40mg daily
 - Measured MPA-plasma concentrations measured vial blood draws: redose, 30mins, 1 hour, and 2 hours
 - Measured again 1 month after stopping PPI

Kofler, et al -- Results

- MMF blood concentration time profiles of MPA with and without pantoprazole 40mg

Kofler, et al. Continued

- **Conclusions**
 - “The present study shows that the usual therapeutic dose of pantoprazole 40mg had a significant influence on the maximal MPA plasma concentration”
 - “The total MPA-AUC could be increased by 34% after PPI withdrawal”
Proton Pump Inhibitor Co-medication Reduces Active Drug Exposure in Heart Transplant Recipients Receiving Mycophenolate Mofetil

- Followed 19 transplant patients
 - Mean time s/p OHTx was 2.3 yrs
 - Adjusted MMF dose to target trough levels of 1-4mg/L
 - All patients received pantoprazole
 - MMF levels measured when pts were on PPI and then 1 month after stopping

- Results
 - Found significantly lower MMF troughs/AUCs during PPI therapy vs. PPI-free

Dose-adjusted MPA AUCs with or without PPI co-medication

N= 19

Omeprazole Impairs Absorption of Mycophenolate Mofetil But Not of Enteric-Coated Mycophenolate Sodium in Healthy Volunteers

- Measured drug bioavailability in 12 healthy study volunteers (6 male/6 female)
 - **Study A:** MMF 1000mg with and without omeprazole 20mg twice daily
 - **Study B:** EC-MPS 720mg with and without omeprazole 20mg twice daily
 - Chose highest recommended dose of omeprazole to maximize interaction

Results

Omeprazole Impairs Absorption of Mycophenolate Mofetil But Not of Enteric-Coated Mycophenolate Sodium in Healthy Volunteers

Conclusion

- “Incomplete dissolution of mycophenolate mofetil at elevated gastric pH is responsible for the decreased absorption of MPA with co-administered PPIs in volunteers”

- “The absorption of EC-MPS is not affected”

The Role of Proton Pump Inhibitors on Early Mycophenolic Acid Exposure in Kidney Transplantation: Evidence from the CLEAR Study

- **CLEAR Study – 126 Adult kidney transplant recipients**
 - Six month, open-label, prospective, randomized, controlled, multicenter study conducted in 9 centers in Canada
 - **Treatment arm (N=65):** Loading dose of MMF 1500mg twice daily until POD 5, then 1000mg twice daily
 - 61.5% received a PPI
 - **Control arm (N=61):** MMF1000mg twice daily
 - 54.1% received a PPI

The Role of Proton Pump Inhibitors on Early Mycophenolic Acid Exposure in Kidney Transplantation: Evidence from the CLEAR Study

- Study was not powered to assess MPA exposure and absorption in patients receiving versus not receiving PPI therapy
 - Patients not randomized to PPI therapy/dosing

- Conclusion
 - PPI therapy in combination with MMF does not appear to have a significant impact on early MPA exposure

Kiberd BA, et al. *Ther Drug Monit.* 2011;33:120-123
What does all of this mean?
Mycophenolate and PPIs: Things to Consider

- Recent studies have demonstrated decreased MPA exposure with co-administration of PPI
 - Healthy volunteers, heart, and kidney recipients

- All authors recommend therapeutic drug monitoring if there is concern for adequate levels

- Drug monitoring is difficult
 - Full MPA-AUC requires multiple blood draws
 - Not feasible in clinical practice
Individual Drug Interactions
Statins and FK/CyA

- Cardiovascular disease is the leading cause of death in patients with a functioning renal transplant
 - Cardiovascular risk factors increased post transplant
 - Hypertension
 - Diabetes
 - Dyslipidemia

- More than 50% of renal transplant recipients are treated with statins
 - Good data to support the use of statins in this population

Statins and FK/CyA

• Literature demonstrates a long term benefit of statin therapy in heart transplant recipients
 – Beneficial effect on survival
 – Reduces the development of CAV
 – Wenke et al note CAV in 18% of simvastatin treated patients vs. 42% of non-statin treated patients after a 4 year study period

Statins and FK/CyA

- Statins have been safely used in transplant recipients receiving cyclosporine when used at conservative doses
 - Close monitoring for myalgias
 - LDL reduction to goal is not always achieved
 - Package insert for simvastatin states cyclosporine is a contraindicated combination

Safety and Efficacy of Atorvastatin in Heart Transplant Recipients

- Evaluated 150 patients on lipid lowering therapy
 - Safety and efficacy of higher dose atorvastatin in a group of statin-refractory patients
 - 48 patients were on atorvastatin
 - 69% of the patients initiated at 20mg dose
 - Myalgias, rhabomyolysis, myositis occurred in 4 patients
 - All adverse events occurred within the first 3 months of therapy

Safety and Efficacy of Atorvastatin in Heart Transplant Recipients

- Noted increased efficacy of 20mg dose for LDL lowering effects and appears to be safe with close monitoring

What does all of this mean?
Statins and FK/CyA

- Statins are beneficial in our transplant patients
- Can be used safely at low to moderate doses
- Caution when using high dose statins in Cyclosporine
 - All patients should be warned of possible ADEs and drug held/discontinued if any myalgias
I’m not convinced we’ve wasted enough time on this.
Individual Drug Interactions
Pomegranate and FK/CyA

- Pomegranate has been used in other cultures for centuries for its many suspected health benefits

- Emerged more recently in US for anti-oxidant and anti-inflammatory properties
 - Thought to reduce cardiovascular disease, suppress prostate and breast cancers
Pomegranate and FK/CyA

• Very little literature exists
 – Most studies conducted in rats
 – A couple single case reports of interactions

• Farkas, et al. reported that one single bolus of pom juice did not alter
 – Participants were given 8oz of juice and either IV or PO midazolam at varying doses
 – Found that the consumption of pom juice did NOT alter activity of hepatic or intestinal CYP3A

What does all of this mean?
Pomegranate and FK/CyA

• No solid evidence to prove that Pomegranate can affect FK or CyA levels

• Always use drug monitoring to ensure stable levels
Take Home Points You Already Know…

• Our patients are very complex!
 – Surgically/Medically
 – Medications
 • Polypharmacy
 • Multiple Interactions
 • Patient factors contribute daily
 – Non-compliance
 – GI side effects
Other Take Home Points

• Essentially *any* medication can be used, despite a drug interaction if:
 – You are ready and willing to monitor closely
 • Patients location/OSH can get in the way of safely monitoring
 – You know the time frame/other factors for when you will see an interaction/problem
Drug Interactions Update in the Transplant Patient

Jennifer N. Gray, Pharm.D.
Nurse Practitioners Symposium
Nashville, TN
October 16th – 17th, 2014
Patient Case

• 30 year old female s/p DLTx in April 2014
 – Tacrolimus 1mg twice daily
 • Levels have been stable between 8-10ng/mL
 – Mycophenolate mofetil 1000mg twice daily
 – Prednisone 5mg once daily
 – TMP/SMX DS 1 tablet daily Mon, Wed, and Fri
 – Itraconazole suspension 20mls twice daily
 – Lisinopril 5mg daily
 – Escitalopram 10mg daily at bedtime
Hospital Rounds

- 30 year old female s/p DLTx in April 2014
 - The patient is admitted to the hospital with elevated LFTs and nausea/vomiting
 - The team wants to stop the Itraconazole 200mg twice daily

WHAT DO YOU RECOMMEND?
Clinic Follow-up

- 30 year old female s/p DLTx in April 2014
 - Patient has now been put on voriconazole
 - Returns to clinic 1 week after starting therapy
 - Tacrolimus level is now 18.3ng/mL and the patient’s SCr and K+ are elevated

WHAT DO YOU RECOMMEND?
Clinic Follow-up

• 30 year old female s/p DLTx in April 2014
 – The patient had completed the course of voriconazole
 – The patient returns to clinic and is now hypertensive

• Initially, the MD wants to add Diltiazem 180mg twice daily

WHAT DO YOU RECOMMEND?