Management of Post-transplant hyperlipidemia

B. Gisella Carranza Leon, MD
Assistant Professor of Medicine
Lipid Clinic - Vanderbilt Heart and Vascular Institute
Division of Diabetes, Endocrinology and Metabolism
Vanderbilt University Medical Center
Learning objectives

• Recognize abnormalities in cholesterol panels

• Identify the mechanisms associated to post transplant dyslipidemia

• Become familiar with treatment options for hypercholesterolemia, hypertriglyceridemia and mixed hyperlipidemia in transplant patients
UNDERSTANDING A CHOLESTEROL PANEL
Cholesterol values

- Total Cholesterol

 \[\text{LDL-C} + \text{HDL-C} + \frac{\text{VLDL}}{5} \]

- Triglycerides
- HDL-C
- LDL-C*

* Calculated value. If Tg > 400 mg/dl LDL cannot be calculated and needs to be measured

Classification of cholesterol & triglyceride levels in mg/dl

<table>
<thead>
<tr>
<th>LDL-C</th>
<th></th>
<th></th>
<th>HDL-C</th>
<th></th>
<th></th>
<th>Triglycerides</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><100</td>
<td>Desirable</td>
<td>Below desirable</td>
<td><40 (men)</td>
<td>Low</td>
<td></td>
<td><150</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>100–129</td>
<td>Above desirable</td>
<td>Borderline high</td>
<td><50 (women)</td>
<td>Low</td>
<td></td>
<td>150–199</td>
<td>Borderline high</td>
<td></td>
</tr>
<tr>
<td>130–159</td>
<td>High</td>
<td>Borderline high</td>
<td></td>
<td></td>
<td></td>
<td>200–499</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>160–189</td>
<td>High</td>
<td>Borderline high</td>
<td></td>
<td></td>
<td></td>
<td>≥500</td>
<td>Very high†</td>
<td></td>
</tr>
<tr>
<td>≥190</td>
<td>Very high</td>
<td>Very high</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Most common dyslipidemias

- Hypercholesterolemia
- Mixed hyperlipidemia
- Hypertriglycerideridemia
Lipid Clinic – 3 new patients

Mrs. A Mr. B Ms. C
Mrs. A

<table>
<thead>
<tr>
<th></th>
<th>Normal range</th>
<th>Patient’s results</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td><200</td>
<td>210</td>
</tr>
<tr>
<td>Tg</td>
<td><150</td>
<td>88</td>
</tr>
<tr>
<td>HDL</td>
<td>>50</td>
<td>49</td>
</tr>
<tr>
<td>LDL</td>
<td><130</td>
<td>143</td>
</tr>
</tbody>
</table>

Hypercholesterolemia

Cholesterol values are in mg/dl.
<table>
<thead>
<tr>
<th></th>
<th>Normal range</th>
<th>Patient’s results</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td><200</td>
<td>329</td>
</tr>
<tr>
<td>Tg</td>
<td><150</td>
<td>1457</td>
</tr>
<tr>
<td>HDL</td>
<td>>40</td>
<td>36</td>
</tr>
<tr>
<td>LDL</td>
<td><130</td>
<td>128</td>
</tr>
</tbody>
</table>

Hypertriglyceridermia

Cholesterol values are in mg/dl.
Ms. C

<table>
<thead>
<tr>
<th></th>
<th>Normal range</th>
<th>Patient’s results</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td><200</td>
<td>302</td>
</tr>
<tr>
<td>Tg</td>
<td><150</td>
<td>260</td>
</tr>
<tr>
<td>HDL</td>
<td>>50</td>
<td>74</td>
</tr>
<tr>
<td>LDL</td>
<td><130</td>
<td>176</td>
</tr>
</tbody>
</table>

Mixed Hyperlipidemia

Cholesterol values are in mg/dl.
TRANSPLANT & HYPERLIPIDEMIA
Transplant & Hyperlipidemia

Factors associated with lipid abnormalities

Immunosuppressive drugs

When to check a lipid panel

Cardiovascular disease & transplant

Prevalence
Transplant & Hyperlipidemia

Factors associated with lipid abnormalities

Immunosuppressive drugs

When to check a lipid panel

Cardiovascular disease & transplant

Prevalence
Prevalence of hyperlipidemia in patients s/p organ transplant

HCT= allogenic hematopoietic stem cell transplantation
HLD= hyperlipidemia, LDL=hypercholesterolemia, Tg=hypertriglyceridemia

World J Transplant 2016;6(1):125-134
Ther Adv Endocrinol Metab 2016;7(3) 110-127
Current pharmaceutical design, 2006 (12): 4771-4783
Cardiol Clin 21(2003) 377-392
Bio Blood Marrow Transplant 2015(21):809-820
Transplant & Hyperlipidemia

Prevalence

Factors associated with lipid abnormalities

Immunosuppressive drugs

Cardiovascular disease & transplant

When to check a lipid panel
Cardiovascular disease (CVD) & transplant

• CVD is a *common cause* of morbidity and mortality among long term transplant survivors

• 1st cause of death in heart & kidney transplant recipients

• 2nd cause of death in liver transplant recipients

• CVD causes late mortality:
 – 40% after cardiac and renal transplantation
 – 20% after liver transplantation
 – 5% after lung transplantation

• Atherosclerosis \rightarrow accelerated after transplantation
Hyperlipidemia & transplant

• Incidence ↑ after organ transplantation

• Risk factor for CVD

 Interventions for hyperlipidemia have an impact on reducing cardiac deaths and non-fatal MI in clinical trials specific to the transplant population

• Risk factor for long-term graft loss

 Hyperlipidemia is a possible contributor to chronic kidney allograft injury as a non immune risk factor
Lipid lowering therapy & transplant

• National Kidney Foundation Kidney Disease Quality Outcomes Initiative guidelines:
 – Transplanted patients are included in the highest risk category (considered in the highest ASCVD risk group) (2004)
 – Consider renal transplant as a coronary heart disease equivalent risk (2004)
 – Statins should be prescribed adults >30 yrs. of age & s/p kidney transplant regardless of their baseline cholesterol level (2013)

• Absence of guidelines for other transplant recipients → consider placing these patients in the high risk category

ASCVD – atherosclerotic cardiovascular disease
ALERT Trial

Assessment of Lescol in Renal Transplantation

- RCT, double blind, placebo controlled

- 2102 renal transplant recipients taking cyclosporine (TC 154-347 mg/dl), age 30-75.

- Fluvastatin 40-80 mg (n=1050) or Placebo (n=1052) for 5 - 6 yrs

- 1ary endpoint – Major Adverse Cardiac Event (cardiac death, nonfatal MI or coronary intervention procedure)

Lancet 2003;361:2024-2031
ALERT Trial - Results

- Mean follow up: 5.1 yrs
- Adverse effects were similar in both groups
- Fluvastatin lowered LDL-C by 32%
- Risk reduction for the 1ary end-point was not significant RR 0.83 (95% CI, 0.64-1.06, p=0.139)

Lancet 2003;361:2024-2031
ALERT Trial – Results cont.

- Post hoc analysis -> fluvastatin therapy was associated
 - 38% reduced risk of cardiac death (p=0.031)
 - 32% risk reduction for definite nonfatal MI (p=0.048)
 - Resulted on a significant risk reduction of the combined end point (cardiac death and non fatal MI) by 35% (p=0.005)
Statins & heart transplant

- RCTs have shown that *pravastatin* & *simvastatin*
 - Improve survival
 - ↓ incidence of acute rejection
 - ↓ transplant vasculopathy

- All patients receive a statin after cardiac transplantation regardless of their baseline LDL-C
Transplant & Hyperlipidemia

Prevalence

Factors associated with lipid abnormalities

Cardiovascular disease & transplant

Immunosuppressive drugs

When to check a lipid panel
Transplant & Hyperlipidemia

Prevalence

Cardiovascular disease & transplant

Factors associated with lipid abnormalities

Immunosuppressive drugs

When to check a lipid panel
Immunosuppression & hyperlipidemia

Calcineurin inhibitors
- Cyclosporine - ↑ LDL
- Tacrolimus – ↑ LDL (possibly)

Antimetabolites
- Azathioprine
- Mycophenolate sodium

mTOR Inhibitor
- Sirolimus – ↑ LDL & Tg
- Everolimus – ↑ LDL

Corticosteroids
- ↑ Tg & LDL
- **Cyclosporine:**
 - Binds to the LDL-R → ↑ LDL-C levels
 - ↑ activity of hepatic lipase → IDL @ LDL
 - ↓ activity of lipoprotein lipase
 - ↓ bile acid synthesis → down regulates LDL-R
 - Highly lipophilic, it is transported in LDL-C particles
 - Effect is dose dependent

- **Tacrolimus:**
 - Produces less lipid disturbance

↑ TC, ↑ Tg, ↑ VLDL & ↑ LDL
Sirolimus:
- Impairs lipoprotein lipase
- ↑ secretion of VLDL
- May cause hepatic over production of lipoprotein
- Dose dependent effect

↑ TC, ↑Tg & ↑LDL
Corticosteroids

- **Increase:**
 - FFA synthetase
 - hepatic synthesis of VLDL
 - VLDL → LDL
 - HMG-CoA reductase activity

- **Decrease:**
 - lipoprotein lipase activity
 - synthesis of LDL-R

↑ ↑ Tg , ↑ TC, ↑ LDL & ↓ HDL

Ther Adv Endocrinol Metab 2016;7(3) 110-127
Current pharmaceutical design, 2006 (12): 4771-4783
Balancing immunosuppression & hyperlipidemia

• Immunosuppressive therapy takes precedence

• Possible changes in immunosuppression:
 – Cyclosporine → tacrolimus
 – Stop sirolimus
 – Low dose steroids
Transplant & Hyperlipidemia

Factors associated with lipid abnormalities

When to check a lipid panel

Cardiovascular disease & transplant

Immunosuppressive drugs
Pre transplant

2/3/6 months post transplant or after a change in treatment

- Dietitian consult
- @ 3 m reassess
- Drug therapy
- @ 3 m reassess

Annually

NKF K/DOQI clinical practice guidelines 2004
World J Transplant 2016; 6(1):125-134
When should a lipid panel be checked? cont.

• **2013 KDIGO guidelines**
 – Initial presentation

 – Suggest
 • No follow up is required for many patients
 • Follow up when results will alter management

 – Reasons to repeat a lipid panel
 • Assessment of adherence
 • Concern about the presence of a new secondary cause for dyslipidemia
When should a lipid panel be checked? cont.

- **American Association for the Study of Liver Disease 2012 Guidelines**
 - Measurement of a fasting lipid panel annually

- **s/p hematopoietic stem cell transplant patients**
 - Annual fasting lipid panel
 - Patients on immunosuppression
 - Have chronic GVHD
 - Previous abnormal lipid profile
TREATMENT OF POST TRANSPLANT HYPERLIPIDEMIA
Treatment overview

Non-pharmacologic

• Dietitian

Pharmacologic

• Started 3 months after lifestyle interventions
Therapeutic lifestyle changes

• **Diet**
 – Saturated fat \(<7\%\) of total calories
 – Polyunsaturated fat up to **10\%** of total calories
 – Monounsaturated fat up to **20\%** of total calories
 – Total fat 25-35\% of total calories
 – Carbohydrates 50-60\% of total calories
 – Fiber 20-30 g per day

• **Physical Activity**
 – 3-4 times per week 20-30 minutes

• **Habits**
 – Smoking cessation
 – Alcohol in moderation
Mrs. A

• 41 y.o.
• s/p double lung transplant – 6 yrs ago
• Migraines

• Medications:
 – Tacrolimus
 – Azathioprine
 – Prednisone
 – Topiramate

• Hyperlipidemia hx:
 – Dx – 1 yr. ago
 – Hypercholesterolemia
 – Atorvastatin - myalgias
 – Rosuvastatin - myalgias
 – No h/o ASCVD
 – Fam Hx premature heart disease
 • P-aunt MI in her 40s
 • P-GF MI in his 40s
 • P-GM MI in her 40s

ASCVD – atherosclerotic cardiovascular disease
Mrs. A

<table>
<thead>
<tr>
<th></th>
<th>Pre Tx</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>186</td>
</tr>
<tr>
<td>Tg</td>
<td>65</td>
</tr>
<tr>
<td>HDL</td>
<td>73</td>
</tr>
<tr>
<td>LDL</td>
<td>100</td>
</tr>
</tbody>
</table>
Mrs. A

<table>
<thead>
<tr>
<th></th>
<th>Pre Tx</th>
<th>2 yrs ago</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>186</td>
<td>171</td>
</tr>
<tr>
<td>Tg</td>
<td>65</td>
<td>98</td>
</tr>
<tr>
<td>HDL</td>
<td>73</td>
<td>65</td>
</tr>
<tr>
<td>LDL</td>
<td>100</td>
<td>86</td>
</tr>
</tbody>
</table>
Mrs. A

<table>
<thead>
<tr>
<th></th>
<th>Pre Tx</th>
<th>2 yrs ago</th>
<th>1 yr. ago*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>186</td>
<td>171</td>
<td>207</td>
</tr>
<tr>
<td>Tg</td>
<td>65</td>
<td>98</td>
<td>78</td>
</tr>
<tr>
<td>HDL</td>
<td>73</td>
<td>65</td>
<td>48</td>
</tr>
<tr>
<td>LDL</td>
<td>100</td>
<td>86</td>
<td>143</td>
</tr>
</tbody>
</table>

*Her dose of tacrolimus was increased 6 m prior to this test from 0.5 mg bid to 2 mg bid.
Mrs. A

<table>
<thead>
<tr>
<th></th>
<th>Pre Tx</th>
<th>2 yrs ago</th>
<th>1 yr. ago*</th>
<th>Current**</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>186</td>
<td>171</td>
<td>207</td>
<td>210</td>
</tr>
<tr>
<td>Tg</td>
<td>65</td>
<td>98</td>
<td>78</td>
<td>88</td>
</tr>
<tr>
<td>HDL</td>
<td>73</td>
<td>65</td>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td>LDL</td>
<td>100</td>
<td>86</td>
<td>143</td>
<td>143</td>
</tr>
</tbody>
</table>

*Her dose of tacrolimus was doubled 6 m prior to this test from 0.5 mg bid to 2 mg bid

Elevated lipoprotein (a)
Treatment of hypercholesterolemia

<table>
<thead>
<tr>
<th>Treatment</th>
<th>LDL % reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statins</td>
<td>18-63</td>
</tr>
<tr>
<td>Cholesterol absorption inhibitor</td>
<td>18</td>
</tr>
<tr>
<td>Bile acid sequestrants</td>
<td>15-30</td>
</tr>
<tr>
<td>Nicotinic acid</td>
<td>5-25</td>
</tr>
</tbody>
</table>

Lipid academy 9/2015, www.lipid.org
Management of hypercholesterolemia in transplant recipients

<table>
<thead>
<tr>
<th>LDL-C</th>
<th>100-129 mg/dl</th>
<th>>130 mg/dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal*</td>
<td><100 mg/dl</td>
<td><100 mg/dl</td>
</tr>
<tr>
<td>Initiate</td>
<td>TLC</td>
<td>TLC + low dose statin</td>
</tr>
<tr>
<td>Increase</td>
<td>TLC + low dose statin</td>
<td>TLC + 50% max dose statin</td>
</tr>
<tr>
<td>Alternative</td>
<td>Ezetimibe</td>
<td>Ezetimibe</td>
</tr>
</tbody>
</table>

* If the patient has a history of ASCVD – goal <70 mg/dl
TLC therapeutic lifestyle change

2012 Practice guideline by AASLD and the American Society of Transplantation
<table>
<thead>
<tr>
<th>Risk category</th>
<th>Criteria</th>
<th>Treatment goal</th>
<th>Consider drug therapy</th>
</tr>
</thead>
</table>
| Low | 0–1 major ASCVD risk factors
 Consider other risk indicators, if known | <130 LDL-C, mg/dL
 <100 LDL-C, mg/dL | ≥190 Non-HDL-C, mg/dL
 ≥160 LDL-C, mg/dL |
| Moderate | 2 major ASCVD risk factors
 Consider quantitative risk scoring
 Consider other risk indicators* | <130 LDL-C, mg/dL
 <100 LDL-C, mg/dL | ≥160 Non-HDL-C, mg/dL
 ≥130 LDL-C, mg/dL |
| High | ≥3 major ASCVD risk factors
 Diabetes mellitus (type 1 or 2)†
 0–1 other major ASCVD risk factors and
 No evidence of end-organ damage
 Chronic kidney disease stage 3B or 4‡
 LDL-C of ≥190 mg/dL (severe hypercholesterolemia)§
 Quantitative risk score reaching the high-risk threshold¶ | <130 LDL-C, mg/dL
 <100 LDL-C, mg/dL | ≥130 Non-HDL-C, mg/dL
 ≥100 LDL-C, mg/dL |
| Very high | ASCVD
 Diabetes mellitus (type 1 or 2)
 ≥2 other major ASCVD risk factors or
 Evidence of end-organ damage¶¶ | <100 LDL-C, mg/dL
 <70 LDL-C, mg/dL | ≥100 Non-HDL-C, mg/dL
 ≥70 LDL-C, mg/dL |
Statins
Cholesterol absorption inhibitor
Bile acid sequestrants
Niacin
- Statins
- Cholesterol absorption inhibitor
- Bile acid sequestrants
- Niacin

Block cholesterol synthesis

Upregulate LDL receptors

Modulate inflammatory molecules

Clinically proven to ↓mortality & recurrent cardiovascular events
• Stabilizes & ↓ progression of atherosclerotic plaque

• Antioxidant effect
 – ↓ oxidation of LDL may improve vascular function.
 – Oxidized LDL particles play a key role in atherosclerotic plaque formation

• Inhibits:
 – migration of macrophages
 – smooth muscle cell proliferation
• Side effects:

 – 1-2 % ↑liver enzymes, reversible

 – 5-10% myopathy

 – Rhabdomyolysis

 – Development of diabetes mellitus

 – Memory problems
• Risk of myopathy is greatest ...

 – Elderly
 – GFR < 30 mL/min
 – Maximum statin dose
 – Combination with CYP450 inhibitors
• Patient reports myalgias → check a CK

• 3 to 5 times upper limit of normal → recheck the level weekly

• > 5 times upper limit of normal → d/c
Incidence of fatal rhabdomyolysis

• Per 1 million prescriptions by drugs is:

<table>
<thead>
<tr>
<th>Drug</th>
<th>Incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluvastatin</td>
<td>0%</td>
</tr>
<tr>
<td>Pravastatin</td>
<td>0.04%</td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>0.04%</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>0.12%</td>
</tr>
</tbody>
</table>
Statin drug-drug interaction

• Simvastatin and lovastatin
 – Metabolized CYP450- 3A4
 – Contraindicated with cyclosporine

• Rosuvastatin
 – Maximum dose is 5 mg /daily when used with cyclosporine

• Fibrates
 – Gemfibrozil inhibits glucuronidation and uptake of active forms by OATP1B1 transporter by the liver
Table 32. Effects of Cyclosporine on Blood Levels of Statins in Kidney Transplant Recipients.

<table>
<thead>
<tr>
<th>Statin</th>
<th>Increase in the Statin’s AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrovastatin<sup>346</sup></td>
<td>8-fold</td>
</tr>
<tr>
<td>Cerivastatin<sup>a347</sup></td>
<td>5-fold</td>
</tr>
<tr>
<td>Simavastatin<sup>348</sup></td>
<td>3-fold</td>
</tr>
<tr>
<td>Simavastatin<sup>349</sup></td>
<td>8-fold</td>
</tr>
<tr>
<td>Lovastatin<sup>350</sup></td>
<td>2-fold</td>
</tr>
<tr>
<td>Lovastatin<sup>351</sup></td>
<td>3-fold</td>
</tr>
<tr>
<td>Lovastatin<sup>352</sup></td>
<td>20-fold</td>
</tr>
<tr>
<td>Pravastatin<sup>352</sup></td>
<td>5-fold</td>
</tr>
<tr>
<td>Fluvastatin<sup>353</sup></td>
<td>2-fold<sup>b</sup></td>
</tr>
</tbody>
</table>

^aWithdrawn, ^bP>0.05

Abbreviation: AUC, area under the concentration-time curve.
Recommended statin doses for adults s/p kidney transplant

<table>
<thead>
<tr>
<th>Statin</th>
<th>mg/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluvastatin</td>
<td>(40)-80</td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>(10)-20</td>
</tr>
<tr>
<td>Rosuvastatin</td>
<td>(5)-10</td>
</tr>
<tr>
<td>Simvastatin / ezetimibe</td>
<td>20/10</td>
</tr>
<tr>
<td>Pravastatin</td>
<td>(20)-40</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>(20)-40</td>
</tr>
<tr>
<td>Pitavastatin</td>
<td>2</td>
</tr>
</tbody>
</table>

Doses in () are starting doses and recommended doses when patients are in cyclosporine.

Lipid abnormalities after renal transplantation uptodate.com

Table 31. Recommended Daily Statin Dose Ranges.\(^a\)

<table>
<thead>
<tr>
<th>Statin</th>
<th>Level of GFR (mL/min/1.73 m(^2))</th>
<th>With Cyclosporine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥30</td>
<td><30 or dialysis</td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>10-80 mg</td>
<td>10-80 mg</td>
</tr>
<tr>
<td>Fluvastatin</td>
<td>20-80 mg</td>
<td>10-40 mg</td>
</tr>
<tr>
<td>Lovastatin</td>
<td>20-80 mg</td>
<td>10-40 mg</td>
</tr>
<tr>
<td>Pravastatin</td>
<td>20-40 mg</td>
<td>20-40 mg</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>20-80 mg</td>
<td>10-40 mg</td>
</tr>
</tbody>
</table>

\(^a\)Adult Treatment Panel III recommendations for GFR ≥30 mL/min/1.73 m\(^2\).\(^{[R3]}\) Most manufacturers recommend once daily dosing, but consider giving 50% of the maximum dose twice daily.
• Binds to cholesterol transporter & blocks its absorption
• May increase LDL-R and also lower plasma LDL-C

Courtesy of MacRae Linton, MD
• Ezetimibe 10 mg daily

• 2nd choice in patients who do not tolerate a statin

• Used in combination with a statin

• Smaller dose (5mg/daily?) due to its interaction with cyclosporine which can induce a 2 to 12 fold ↑ in ezetimibe levels
• Low risk of serious side effects

• Reports:
 – Myalgias
 – Rhabdomyolysis
 – Hepatitis
 – Acute pancreatitis
 – Thrombocytopenia
Hepatic bile acid pool

↑ hepatic bile acid synthesis from cholesterol

↓ intrahepatic cholesterol pool

↓ LDL-C

↑ LDL clearance

↑ LDL receptors

Statins

Cholesterol absorption inhibitor

Bile acid sequestrants

Niacin

Cholesterol absorption inhibitor

Bile acid sequestrants

Niacin
<table>
<thead>
<tr>
<th>Statins</th>
<th>Cholesterol absorption inhibitor</th>
<th>Bile acid sequestrants</th>
<th>Niacin</th>
</tr>
</thead>
</table>

- Gastrointestinal side effects – most common
- Interfere with the absorption of the immunosuppressive drugs
- Can raise triglycerides
- Should be separately administered from them:
 - 1 hour before
 - 4 hours after
↓ release of fatty acids from adipose tissue

↓ FFA \rightarrow ↓ Tg synthesis

↓ VLDL secretion

↓ LDL-C
• Side effects:
 – Flushing
 – Hepatotoxicity
 – Hyperglycemia
 – Hyperuricemia
 – Gastrointestinal discomfort (nausea, vomiting, dyspepsia)
Mrs. A

• Three months on a low fat diet

• At three months
 – Statin
 – Ezetimibe
Mr. B

- 44 y.o. male
- h/o ESRD s/p kidney transplant – 6 m ago
- Type 2 diabetes
- Hypertension

Medications:
- Tacrolimus 3 mg bid*
- Mycophenolate mofetil
- Pravastatin 40 mg daily

Hyperlipidemia Hx:
- Dx 2 yrs. prior to tx
- Hypertriglyceridemia
- Prior med: fish oil
- No h/o pancreatitis

* His dose was decreased from Tacrolimus 5 mg bid 3 months ago
Mr. B cont.

<table>
<thead>
<tr>
<th></th>
<th>Pre Tx</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>310</td>
</tr>
<tr>
<td>Tg</td>
<td>836</td>
</tr>
<tr>
<td>HDL</td>
<td>41</td>
</tr>
<tr>
<td>LDL</td>
<td>135</td>
</tr>
<tr>
<td>HbA1c</td>
<td>6%</td>
</tr>
<tr>
<td>GFR</td>
<td>6</td>
</tr>
</tbody>
</table>
Mr. B cont.

<table>
<thead>
<tr>
<th></th>
<th>Pre Tx</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>310</td>
<td>329</td>
</tr>
<tr>
<td>Tg</td>
<td>836</td>
<td>1457</td>
</tr>
<tr>
<td>HDL</td>
<td>41</td>
<td>36</td>
</tr>
<tr>
<td>LDL</td>
<td>135</td>
<td>128</td>
</tr>
<tr>
<td>HbA1c</td>
<td>6%</td>
<td>7.8%</td>
</tr>
<tr>
<td>GFR</td>
<td>6</td>
<td>>60</td>
</tr>
</tbody>
</table>
Hypertriglyceridemia

• Indication for pharmacologic treatment:
 – Tg > 500 mg/dl

• Goal \rightarrow prevent pancreatitis (Tg > 1000 mg/dl)
Hypertriglyceridemia cont.

- Treat secondary etiology

- Diseases:
 - Diabetes
 - Nephrotic syndrome

- Lifestyle:
 - Diet high in simple carbohydrates
 - Alcohol
Hypertriglyceridemia cont.

• Drugs:
 – Immunosuppressant agents
 – Estrogen
 – Glucocorticoids
 – Beta blockers
 – Retinoids
Hypertriglyceridemia management

• Tg < 500 mg/dl
 – Lifestyle modification

• Tg > 500 mg/dl
 – Fibrates
 • Fenofibrate
 • Gemfibrozil
 – Omega 3 fatty acids (DHA & EPA)
 • 4 grams daily (2 grs bid)
Treatment of hypertriglycerideridemia

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Tg % reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrates</td>
<td>20-50</td>
</tr>
<tr>
<td>Omega-3 fatty acids</td>
<td>45</td>
</tr>
<tr>
<td>Statins</td>
<td>7-30</td>
</tr>
<tr>
<td>Nicotinic acid</td>
<td>20-50</td>
</tr>
</tbody>
</table>

Lipid academy 9/2015, www.lipid.org
• Activate PPAR α

• ↓ hepatic VLDL cholesterol synthesis

• ↑ lipoprotein lipase activity

• Doses need to be adjusted according to the patient’s kidney function
Fibrates

• Adverse effects:
 – GI – dyspepsia, diarrhea
 – Increase LFTs
 – May potentiate action of anticoagulation

• Contraindications
 – Hepatic impairment
 – Pre-existing gallbladder disease
• May reversibly ↑ creatinine

• Myotoxicity
 – fenofibrate is preferred over gemfibrozil when added to a statin
In transplant ...

- Evidence supporting the safety and efficacy of fibrate use is weak

- Dose adjusted for kidney function

- Not recommended

- Only on Tg >1000 mg/dl
• Unclear mechanism of action

• EPA – eicosapentaenoic acid
• DHA – docosahexaenoic acid

• Omega-3: four grams daily (divided doses)
Mr. B

- Dietitian
- Omega 3 fatty acids—2 grs bid
- Diabetes control
Ms. C

- 52 y.o.
- s/p bilateral lung transplant – 3 m ago
- Hypertension
- Hypothyroidism

Medications:
- Tacrolimus 3.5 mg bid
- Azathioprine
- Prednisone 15 mg
- Levothyroxine

Hyperlipidemia Hx:
- Dx 15-20 yrs prior to transplant
- Hypercholesterolemia
- Pre transplant:
 - Atorvastatin
 - Rosuvastatin (stopped at the time of tx)
- No h/o ASCVD
- No Fam Hx premature heart disease
<table>
<thead>
<tr>
<th></th>
<th>Pre Tx</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>251</td>
</tr>
<tr>
<td>Tg</td>
<td>102</td>
</tr>
<tr>
<td>HDL</td>
<td>50</td>
</tr>
<tr>
<td>LDL</td>
<td>182</td>
</tr>
<tr>
<td>GFR</td>
<td>>60</td>
</tr>
</tbody>
</table>
Ms. C

<table>
<thead>
<tr>
<th></th>
<th>Pre Tx</th>
<th>3 m post tx</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>251</td>
<td>302</td>
</tr>
<tr>
<td>Tg</td>
<td>102</td>
<td>260</td>
</tr>
<tr>
<td>HDL</td>
<td>50</td>
<td>74</td>
</tr>
<tr>
<td>LDL</td>
<td>182</td>
<td>176</td>
</tr>
<tr>
<td>GFR</td>
<td>>60</td>
<td>34</td>
</tr>
</tbody>
</table>

Pravastatin 10 mg daily
Ms. C – 3 months later

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>After Pravastatin</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>302</td>
<td>238</td>
</tr>
<tr>
<td>Tg</td>
<td>260</td>
<td>174</td>
</tr>
<tr>
<td>HDL</td>
<td>74</td>
<td>71</td>
</tr>
<tr>
<td>LDL</td>
<td>176</td>
<td>132</td>
</tr>
<tr>
<td>GFR</td>
<td>34</td>
<td>19</td>
</tr>
</tbody>
</table>

Pravastatin 20 mg daily
Ms. C – 6 months later

<table>
<thead>
<tr>
<th></th>
<th>TC</th>
<th>302</th>
<th>238</th>
<th>234</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tg</td>
<td>260</td>
<td>174</td>
<td>317</td>
<td></td>
</tr>
<tr>
<td>HDL</td>
<td>74</td>
<td>71</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>LDL</td>
<td>176</td>
<td>132</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>GFR</td>
<td>34</td>
<td>19</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

Pravastatin 40 mg daily
Ms. C – 9 months later

<table>
<thead>
<tr>
<th></th>
<th>TC</th>
<th>Tg</th>
<th>HDL</th>
<th>LDL</th>
<th>GFR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>302</td>
<td>260</td>
<td>74</td>
<td>176</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>238</td>
<td>174</td>
<td>71</td>
<td>132</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>234</td>
<td>317</td>
<td>40</td>
<td>131</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>222</td>
<td>226</td>
<td>69</td>
<td>104</td>
<td>26</td>
</tr>
</tbody>
</table>

Pravastatin 40 mg daily
When should you refer a patient to a lipid specialist?

- If the patient’s LDL > 190 mg/dl or triglycerides >1000 mg/dl

- The patient has a prior history of intolerance to cholesterol lowering medications

- If combination therapy is not controlling your patient’s cholesterol level
THANKS

barbara.g.carranza.leon@vanderbilt.edu

Lipid Clinic - Vanderbilt Heart and Vascular Institute
(615) 322-2318