Diagnostic Work-up of Renal Insufficiency in Solid Organ Transplant Recipients

Beatrice P. Concepcion MD
Assistant Professor of Medicine
Division of Nephrology and Hypertension
Vanderbilt University Medical Center
Objectives

• To differentiate Acute Kidney Injury (AKI) from Chronic Kidney Disease (CKD)
• To enumerate common causes of AKI in solid organ transplant (SOT) recipients
• To understand the role of different diagnostic tests in the work-up of causes of AKI in SOT recipients
• To enumerate common causes of CKD in SOT recipients
• To understand the utility of different diagnostic tests in SOT recipients with CKD
CASE 1: In your office

• 65/M with a history of kidney transplant in 2012, HTN and DM, just moved to Nashville, complaining of fatigue, nausea and vomiting.
• Lab check: BUN 75, Creatinine 3.8
THE DIAGNOSTIC APPROACH

• Acute, subacute or chronic ???
 • Baseline creatinine
 • Clinical elements of the case
 • Onset of symptoms
 • Urine output
 • Rate of rise of creatinine
 • Renal ultrasound: size and echogenicity of kidneys *
 • Anemia *
 • Hypocalcemia and hyperphosphatemia
CASE 1: In your office

• 65/M with a history of kidney transplant in 2012, HTN and DM, just moved to Nashville, complaining of fatigue, nausea and vomiting.

• Lab check: BUN 75, Creatinine 3.8

• Sudden decrease in urine output

• Hgb 13.1, Phos 3.5, Ca 10.2, iPTH 30

• Renal ultrasound: normal sized-kidneys with normal echogenicity

• Additional records: creatinine 1 month ago was 1.2
ACUTE KIDNEY INJURY

• Abrupt loss of kidney function
• Retention of urea and other nitrogenous waste products
• Dysregulation of extracellular volume and electrolytes
• Easily detected by measurement of the serum creatinine which is used to estimate the glomerular filtration rate (GFR) *
Defining AKI: RIFLE criteria

- RIFLE criteria

CLASSIFICATION OF AKI

Acute Kidney Injury

- Prerenal
- Intrinsic
- Postrenal
In formulating AKI differentials, remember, a **kidney transplant** is...

- **A TRANSPLANT.**
 - Rejection: Cellular, Antibody-mediated
 - Infection: Pyelonephritis, BK nephropathy
 - Med side effects: CNI toxicity, thrombotic microangiopathy

- **SOLITARY.**
 - Obstruction
 - Renal Artery Stenosis
 - Renal Vein Thrombosis

- **A KIDNEY.**
 - Disease Recurrence
 - Everything else!
Case 2: In the ER

- 75/M with a liver transplant and h/o prostate CA, complaining of decreased urine output x 3 days.
- Lab check: BUN 65, Creatinine 6.8 (baseline 1.2 a year ago)
- UA: pH 5.5, sg 1.010, 1 RBC, no protein
CLASSIFICATION OF AKI

- Prerenal
 - Obstruction from renal pelvis to urethra
 - Bilateral obstruction or unilateral with solitary functioning kidney
 - Increased pressure leads nephron destruction
 - Oliguria/anuria common
 - UA generally not helpful
 - Hydronephrosis on imaging

- Intrinsic

- Postrenal
CLASSIFICATION OF AKI

Acute Kidney Injury

- Prerenal
 - Prostate hypertrophy
 - Neurogenic bladder
 - Intraureteral obstruction – crystals (uric acid, acyclovir, indinavir), stones, clots, tumor
- Intrinsic
- Postrenal
 - Extraureteral obstruction – tumor (cervical, prostate), retroperitoneal fibrosis*
Make sure it’s not post-renal!

• Ask about...
 • Urine output?
 • Symptoms of obstruction?

• Then...
 • Insert Foley catheter
 • Get a renal ultrasound to assess for hydrenephrosis
Case 2: In the ER

- 75/M with h/o prostate CA, complaining of decreased urine output x 3 days.
- Lab check: BUN 65, Creatinine 6.8 (baseline 1.2 a year ago)
- UA: pH 5.5, sg 1.010, 1 RBC, no protein
- Foley catheter inserted
- Urine output of 5 liters in next 24 hours
- Creatinine down to 4.5 the next morning
Case 3: In the MICU

• 45/F with a lung transplant, complaining of fever and chills
• Lab check: BUN 80, Creatinine 3.3 (baseline 0.8 ten days ago)
• Given boluses of 0.9 normal saline, BUN/creatinine down to 60/2.5 the next morning
CLASSIFICATION OF AKI

Acute Kidney Injury

- Prerenal
- Intrinsic
- Postrenal

- Result of physiologic responses that lead to decreased kidney function
- Reduced renal perfusion
- Maximized renal compensation
- No tubular, interstitial or glomerular damage
- Bland UA
- Low urine Na, FE Na < 1%
CLASSIFICATION OF AKI

- **Acute Kidney Injury**
 - **Prerenal**
 - Volume depletion
 - Renal
 - Extrarenal
 - Hypotension
 - Cardiovascular
 - CHF
 - Arrhythmias
 - Acute MI
 - **Intrinsic**
 - **Postrenal**
 - Hemodynamic
 - IV dye
 - NSAIDs
 - Cyclosporine/tacrolimus
 - ACE-I/ARB
 - Amphotericin B
 - Hypercalcemia
 - Hepatorenal syndrome*
Case 5: In the Transplant Unit

- 75/F s/p Kidney Transplant (2002), HTN and DM, admitted with abdominal pain, diarrhea, vomiting x 3 days
- Meds include: prograf, prednisone, lisinopril
- Took Ibuprofen x 3 doses for pain
- BP 90/60, HR 65, RR 18
- Lab check: BUN 65, Creat 3.5 (baseline 2.3 two months ago)
- Prograf trough level=18
PRE-RENAL AZOTEMIA

PRE-RENAL AZOTEMIA

Acute CNI Toxicity

- Afferent arteriole constriction leading to pre-renal picture and if prolonged, ischemic ATN
- Exacerbated by other hemodynamic factors:
 - Volume depletion, NSAID’s, Amphoterecin, Hypercalcemia, ACE’s/ARB’s
- Usually reversed by decreasing drug levels
Case 5: In the Transplant Unit

- Given 2 liters normal saline for volume depletion
- Lisinopril and prograf held
- Educated about avoidance of NSAIDS!
- Creatinine improved to 2.5 after 2 days
CLASSIFICATION OF AKI

Acute Kidney Injury

- Prerenal
- Intrinsic
- Postrenal

- Kidney itself is site of abnormality leading to decreased GFR
- Categorized anatomically by the area of the kidney parenchyma involved
- UA abnormal
CLASSIFICATION OF AKI

Acute Kidney Injury

- Prerenal
- Intrinsic
 - Glomerular
 - Vascular
 - Interstitial
 - Tubular
- Postrenal
INTRINSIC AKI

Glomerular

• Acute glomerulonephritis (IgA nephropathy, Post-Strep GN, MPGN, Lupus nephritis)
• Vasculitis (Wegener’s, microscopic polyangitis, Churg-Strauss)
• Goodpasture’s syndrome, anti-GBM disease
• Clinically...
 • nephritic syndrome → azotemia, hematuria, hypertension
 • active urine sediment → RBC casts
 • check C3, C4, ANA, ANCA, anti-GBM, cryoglobulins
 • kidney biopsy to confirm
INTRINSIC AKI

Vascular

- Renal infarction, renal artery stenosis, renal vein thrombosis
 - bilateral involvement
 - imaging to confirm
- Malignant hypertension, scleroderma renal crisis
- Atheroembolic disease
 - history of catheterization
 - livedo reticularis, Hollenhorst plaques in retina
 - eosinophiluria
- Thrombotic microangiopathy (TTP, HUS)
INTRINSIC AKI

• Interstitial
 • Acute Interstitial Nephritis – penicillins, cephalosporins, sulfonamides, ciprofloxacin, phenytoin, PPI’s, NSAIDS
 • Clinically...
 • fever, rash, arthralgia, eosinophilia
 • WBC’s and WBC casts, eosinophiluria
INTRINSIC AKI

- Tubular → Acute tubular necrosis (ATN)
 - ISCHEMIC – prolonged prerenal state, sepsis, systemic hypotension
 - NEPHROTOXIC – aminoglycosides, methotrexate, amphoterecin, cisplatin, myoglobin, hemoglobin, IV contrast
- Clinically...
 - renal tubular epithelial cells and granular muddy brown casts
 - bland urinary sediment
 - Fe Na > 2%
IT’S ALL IN THE UA!!!

• pH
• Specific gravity
• Blood
• RBC
• WBC
• Protein
• Granular casts
• Eosinophils
THE FeNa...

• Most accurate diagnostic test to differentiate prerenal disease from ATN
• Fe Na is high in ATN because of...
 • inappropriate sodium wasting due to tubular damage
 • appropriate response to volume expansion
• Difficult to interpret when patient is on diuretics
• Fe Urea < 35 % (prerenal), >50 % (ATN)
• Exceptions to the rule
 • Less severe post-ischemic ATN or ischemic with established ATN
 • ATN superimposed on chronic prerenal disease (cirrhosis, heart failure)
 • ATN due to radiocontrast media or heme pigments (myoglobinuria or hemoglobinuria)
 • Acute glomerulonephritis or vasculitis
 • Less severe acute interstitial nephritis, particularly if nonoliguric
 • Acute urinary tract obstruction (rare)
Causes of AKI in SOT (Kidney) Recipients

• POST-RENAL
 • Transplant ureteral stenosis
 • Bladder outlet obstruction (e.g. neurogenic bladder, urethral stricture)

• PRE-RENAL
 • CNI toxicity
 • Volume depletion
 • Hepatorenal syndrome
 • Cardiorenal syndrome
Causes of AKI in SOT (Kidney) Recipients

• INTRINSIC/”RENAL”
 • Acute rejection
 • BK nephropathy
 • Other viral infections: CMV, adenovirus
 • Prolonged CNI toxicity leading to ATN
 • Renal arterial/venous thrombosis
 • Thrombotic microangiopathy due to CNI’s
 • Recurrent GN (e.g. FSGS, MPGN, IgA nephropathy)
CASE 6

• 55/AA/M, DDKtx (3/2010), complicated by DGF.
• Also with history of failed transplant and history of a high PRA.
• Nadir creatinine 1.3 mg/dL.
• On follow-up 2 months after transplant, creatinine 1.8 mg/dL. UA with 2+ protein, neg blood, 5 WBC’s.
Case 6: Acute Rejection of a Kidney Transplant

- Acute Cellular Rejection
- Acute Humoral Rejection
- Both
T Cell-Mediated Rejection

- Stages:
 - Tubulointerstitial
 - Vascular
 - Intimal
 - Transmural

- Treatment:
 - High-dose steroids
 - +/- Biologic agents
 - Increasing maintenance immunosuppression
Antibody-Mediated Rejection

• Diagnosis:
 • Allograft Dysfunction
 • C4d positivity
 • Donor-specific Ab’s

• Treatment:
 • IVIG
 • Plasmapheresis
 • Rituximab
 • Thymoglobulin
 • Splenectomy
The Usual AKI Work-up:

1. Rule out anything anatomic.
 - Renal US with Doppler: hydronephrosis, RAS

2. Assess urinary sediment.
 - Pyuria: Pyelonephritis, BK nephropathy, Acute rejection, AIN
 - Hematuria: GN, BK nephropathy, AIN
 - Proteinuria: tubular, GN, Acute rejection, transplant glomerulopathy*

3. Check drug levels.
 - CNI toxicity.

4. Assess and optimize volume status.
 - Urine Na/FeNa may not be as helpful

5. Biopsy if diagnosis is unclear.
CKD in SOT Recipients

• Acute versus Chronic
 • Does the patient need a dual-organ transplant?
 • Should the patient be referred for kidney transplantation?

• Measurement of GFR
 • Cut-off values for lung, heart or liver transplants
 • Cut-off values for eligibility for kidney transplantation

• Etiology

• Management
How do you know it’s CKD?

- There is a good reason for CKD (e.g. longstanding DM/HTN).
- Sustained reduction in GFR (3 months)
- Urine sodium NOT low
- Proteinuria
- Ultrasound findings
 - Small kidneys
 - Echogenic kidneys
 - Cortical thinning
- Biopsy findings
 - Glomerulosclerosis
 - Tubular atrophy and interstitial fibrosis
Measurements of GFR

• Estimated GFR
 • Cockroft-Gault
 • MDRD
 • CKD-EPI

• Measured GFR
 • Creatinine clearance
 • 24-hour urine collection (24-hour creatinine to ensure adequate collection)
 • DTPA
Etiology of CKD in SOT recipients

• Diabetes
• Hypertension
• CNI toxicity
• Prolonged ATN
• Others:
 • Glomerular disease
 • ADPKD
Chronic Allograft Nephropathy

- Chronic rejection
 - Transplant glomerulopathy
- CNI toxicity
- BK nephropathy
- Diabetes
- Hypertension
- Others:
 - Recurrent Disease
 - De novo glomerulonephritis
 - Nephrocalcinosis
Management of CKD

• Treat underlying cause if possible.
• Blood pressure control, goal of at least <130/80
• Reduction in proteinuria with RAAS blockade
• Avoidance of nephrotoxic agents
• Avoidance of volume depletion and hypotension