Antimicrobial Peptide LL-37 Produced by HSV-2-Infected Keratinocytes Enhances HIV Infection of Langerhans Cells

Youichi Ogawa,1 Tatsuyoshi Kawamura,1,* Takamitsu Matsuzawa,1 Rui Aoki,1 Peter Gee,4 Atsuya Yamashita,2 Kohji Morishita,2 Kenshi Yamasaki,2 Yoshio Koyanagi,4 Andrew Blauvelt,5 and Shinji Shimada1

1Department of Dermatology
2Department of Microbiology
Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
3Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
4Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
5Oregon Medical Research Center, Portland, OR 97223, USA
*Correspondence: tkawa@yamanashi.ac.jp

SUMMARY

Herpes simplex virus (HSV)-2 shedding is associated with increased risk for sexually acquiring HIV. Because Langerhans cells (LCs), the mucosal epithelium resident dendritic cells, are suspected to be one of the initial target cell types infected by HIV following sexual exposure, we examined whether and how HSV-2 affects HIV infection of LCs. Although relatively few HSV-2/HIV-coinfected LCs were detected, HSV-2 dramatically enhanced the HIV susceptibility of LCs within skin explants. HSV-2 stimulated epithelial cell production of antimicrobial peptides (AMPs), including human β defensins and LL-37. LL-37 strongly upregulated the expression of HIV receptors in monocyte-derived LCs (mLCs), thereby enhancing their HIV susceptibility. Culture supernatants of epithelial cells infected with HSV-2 enhanced HIV susceptibility in mLCs, and this effect was abrogated by blocking LL-37 production. These data suggest that HSV-2 enhances sexual transmission of HIV by increasing HIV susceptibility of LCs via epithelial cell production of LL-37.

INTRODUCTION

Epidemiologic studies have indicated a strong association between the acquisition of HIV and other sexually transmitted diseases (STDs) (Galvin and Cohen, 2004). This link is especially evident in cases of genital ulcer diseases (GUDs), with a 2- to 11-fold increase in the rate of HIV acquisition in the presence of GUD (Cameron et al., 1989; Fleming and Wasserheit, 1999). It is widely recognized that herpes simplex virus type 2 (HSV-2) is a major cause of GUDs, and more than 50 epidemiologic studies have now indicated that HSV-2 shedding is associated with increased risk for acquiring HIV (Wald and Link, 2002). The risk ratio of HIV acquisition for a person with genital herpes is enhanced from 2 to 4 when compared with a person without genital herpes, and potentially 50% of new HIV infections are considered to be attributable or worsened by HSV-2 infection (Wald and Link, 2002).

During sexual transmission of HIV, virus crosses mucosal epithelium and is eventually transmitted to regional lymph nodes, where it establishes permanent infection. Many studies have shown that Langerhans cells (LCs) are one of the important initial cellular targets for HIV, and that this particular type of dendritic cell (DC) plays a crucial role in disseminating HIV (de Witte et al., 2007; Kawamura et al., 2005; Lederman et al., 2006; Shattock and Moore, 2003). LCs are present within genital skin (e.g., outer foreskin) and mucosal epithelium and, after contact with pathogens, readily emigrate from tissue to draining lymph nodes. Immature resident LCs express surface CD4 and CCR5, but not surface CXCR4 (Zaitseva et al., 1997). These LCs are readily infected ex vivo with R5 HIV, but not with X4 HIV (Kawamura et al., 2000, 2008; Reece et al., 1998; Zaitseva et al., 1997). These findings are consistent with previous epidemiologic observations, which have found that the majority of HIV strains isolated from newly infected patients are R5 HIV strains (Zhu et al., 1993). It has been reported that persons with CCR5 homozygous defects are largely protected from sexually acquiring HIV (Liu et al., 1996).

Clinical trials performed over the last several years have shown that circumcision greatly reduces the probability of penile HIV transmission, suggesting that the foreskin is an important portal of HIV entry (Auvert et al., 2005; Bailey et al., 2007; Gray et al., 2007). Although the mechanism leading to protection remains undefined, several ex vivo experiments with foreskin explants have indicated that CD4 T lymphocytes and LCs within foreskin epidermis are initial target cells for HIV (Fahrbach et al., 2010; Ganan et al., 2010; Grivel et al., 2011; Zhou et al., 2011).

In primate models of simian immunodeficiency virus (SIV) infection, there is controversy regarding which cells in the genital mucosa are initially infected by SIV. Studies have demonstrated that the primary infected cells present in the lamina propria of the cervicovaginal mucosa 48–72 hr after intravaginal exposure to SIV are T cells or submucosal DCs, but not epithelial LCs (Spira et al., 1996; Zhang et al., 1999). When vaginal tissue was examined within 1 hr following vaginal inoculation, however, up to...
90% of SIV-infected cells were found to be LCs (Hu et al., 2000). Because only a single layer of columnar epithelium guards the endocervix and the transformation zone, the mucosal barrier can be easily breached by mechanisms such as the microtrauma associated with sexual intercourse, which provides immediate access to target cells, especially CD4+ T cells, in the submucosa (Haase, 2010). Indeed, it has been shown that following mucosal exposure to high doses of SIV, virus can gain access through breaks in the mucosal epithelial barrier and infect resting CD4+ T cells in the submucosa (Haase, 2010). Since molecules targeting CCR5 completely protected against mucosal transmission of SHIV (Lederman et al., 2004), CD4/CCR5-mediated de novo infection of LCs and/or CD4+ T cells is considered to be a major pathway involved in sexual transmission of HIV.

Several mechanisms have been proposed to explain enhanced sexual transmission of HIV during active STD infection, including breakdown of epithelial barriers (i.e., ulceration) with direct inoculation of HIV into the blood (Cunningham et al., 1985), presence of inflammatory leukocytes that act as targets (Zhu et al., 2009), and coinfection of cells by HIV and STD pathogens. Biological mechanisms responsible for greater HIV transmission rates in the presence of genital herpes infections, however, are as of yet unknown. Recently, we and others have suggested that HIV susceptibility of LCs could be directly enhanced by pathogens and indirectly enhanced by inflammatory factors during STD, thereby leading to more likely sexual transmission of HIV (de Jong et al., 2008; Ogawa et al., 2009). In this report, we found that HSV-2 primarily infected epithelial cells and then markedly enhanced HIV infection in adjacent LCs. Interestingly, mechanistic studies revealed that LL-37 produced by HSV-2-infected epithelial cells upregulated CD4 and CCR5 on the surface of bystander LCs, thereby enhancing HIV infection in these cells. These findings may lead to new strategies designed to block sexual transmission of HIV.

RESULTS

HSV-2 Indirectly Enhances HIV Susceptibility in LCs via Interaction with Epithelial Cells

We first examined whether HSV-2 modulates HIV susceptibility of LCs by using an ex vivo skin explant model, whereby resident LCs within epithelial tissue are exposed to HIV and then allowed to emigrate from tissue, thus mimicking conditions that occur following mucosal exposure to HIV (Kawamura et al., 2000).
Epidermal sheets obtained from suction blister roofs were exposed to HSV-2 strain G at 1 x 10^6 PFU/tissue for 1 hr, and then exposed to R5-tropic HIV-1_Bal for 2 hr. Three days later, to quantify numbers of HIV-infected LCs at the single-cell level, cells emigrating from the explants were stained with anti-CD11c, anti-langerin, and anti-HIV p24 mAbs. Intracellular staining for HIV p24 represents productive HIV replication within LCs, since expression can be completely blocked by AZT (Kawamura et al., 2003). The numbers of LCs emigrating from individual explants were determined, and the mean yield ± SD was HSV−/HIV−; 1.04 ± 0.25 x 10^4, HSV−/HIV+; 1.13 ± 0.31 x 10^4, HSV+/HIV−; 1.25 ± 0.27 x 10^4, and HSV+/HIV+; 1.21 ± 0.25 x 10^4 (n = 9). Thus, the number of LCs recovered from the skin explants was not significantly affected by HSV-2 or HIV exposure. However, preincubation of epithelial sheets with HSV-2 significantly increased the percentage of HIV p24+ cells within langerin^+ CD11c^+ LCs approximately 3-fold as compared to LCs emigrating from nonexposed epithelial sheets (Figure 1A). The results of 11 separate experiments with different skin donors are summarized in Figure 1B (mean percentage HIV p24+ LCs ± SD = 0.61 ± 0.31 with no HSV-2; 1.85 ± 0.79 with HSV-2 preincubation, p = 0.0002, n = 11). To assess the ratio of individual HSV-2- and/or HIV-infected LCs emigrating from explants, cells were collected from cultures and stained with anti-CD11c, anti-HSV gD, and anti-HIV p24 mAbs. A recent study in mice showed that HSV impeded emigration of infected LCs by inducing apoptosis and by blocking E-cadherin downregulation (Miller et al., 2011b). Consistent with this finding, the percentage of HSV-2-infected emigrating LCs was much less when compared with LCs that remained within explants at day 3 (Figure 1C and see Figure S1 online). More importantly, we found that HSV-2/HIV-coinfected emigrating LCs were rarely detected (mean percentage of HIV-1 p24+/HSV-2 gD+ LCs ± SD = 0.04 ± 0.02, n = 5, Figure 1C), suggesting that HSV may not directly modulate HIV susceptibility in LCs. Indeed, supernatants from epithelial cell cultures of normal human epidermal keratinocytes (NHEKs) treated with HSV-2 also increased the percentage of HIV p24+ monocyte-derived LCs (mLCs), even though mLCs were not exposed to HSV-2 (Figure 1D). Of note, the magnitude of HIV susceptibility in mLCs enhanced by HSV-treated NHEK supernatants was comparable to that in emigrating LCs in the epithelial explant experiments. Enhancement of HIV infection by supernatants from HSV-2-treated NHEKs was dependent on the dose of HSV-2, and supernatants from heat-inactivated HSV-2-treated NHEKs did not affect HIV susceptibility in mLCs (Figure S2). HIV susceptibility in mLCs was also enhanced when we infected NHEKs with a second HSV-2 strain, 186 (data not shown). Taken together, these results suggest that HSV-2 indirectly mediates HIV infection of epidermal LCs by a soluble factor or factors released by HSV-2-infected epithelial cells.

HSV-2 Augments the Production of Antimicrobial Peptides from Keratinocytes, and LL-37 Enhances HIV Infection in LCs

In STDs, antimicrobial peptides (AMPs), including defensins and cathelicidin, are the key effector molecules of mucosal innate and adaptive immunity. Human vaginal epithelial cells and epidermal keratinocytes can produce human α defensin-5 (hD5), HD6 and human β defensin-1 (hBD1), hBD2, hBD3, hBD4, and the sole cathelicidin in humans, LL-37. Certain defensins (e.g., hBD1) are expressed constitutively, and others (e.g., hBD2 and hBD3) show increased expression in response to inflammation or infection (Klotman and Chang, 2006). Several reports have indicated that several of these AMPs modulate HIV infectivity in peripheral blood mononuclear cells (PBMC) or in CD4^+ T cells (Bergman et al., 2007; Klotman et al., 2008; Quiñones-Mateu et al., 2003; Sun et al., 2005). Thus, we investigated whether HSV-2 induced AMPs production in keratinocytes. NHEKs were incubated with HSV-2 (1 x 10^4 – 1 x 10^6 PFU) or HIV-1 (1 x 10^5 TCID50), and relative mRNA expression levels of AMPs were determined by quantitative RT-PCR. Interestingly, HSV-2 significantly increased the expression of hBD2, hBD3, hBD4, and LL-37, whereas neither HIV nor heat-inactivated HSV-2 affected expression of hBD3, hBD4, and LL-37 (Figure 2).

To determine whether keratinocyte-derived AMPs affect HIV susceptibility of LCs, mLCs were stimulated with AMPs or TNF-α, as a positive control, for 24 hr before exposure to HIV-1. Strikingly, only LL-37 significantly increased the percentage of HIV p24+ mLCs (Figure 3A). This infection-enhancing effect of LL-37 was observed in a dose-dependent manner, utilizing concentrations of LL-37 observed in physiologic conditions (Ong et al., 2002; Yamasaki et al., 2007) (Figure 3B). Interestingly, LL-37 also significantly upregulated surface expression of HIV susceptibility in mLCs.
of CD86, CD83, and CCR7 on mLCs (Figure S3), indicating that LL-37 induces LC maturation.

To confirm whether HSV-2-treated NHEKs could produce LL-37 protein, we measured LL-37 protein levels in culture supernatants from NHEKs treated with medium alone, HSV-2, or heat-inactivated HSV-2 by ELISA. HSV-2 significantly induced production of LL-37 in NHEKs, which peaked at day 5 (Figure 3C). Expression levels of kallikrein 5 (KLK5) have been shown to parallel induction of LL-37 in KCs, since the activity of cathelicidin is controlled by enzymatic processing of the proform hCAP18 to a mature peptide LL-37 by KLK5, a serine protease (Morizane et al., 2010; Yamasaki et al., 2006). Therefore, we measured protein levels of LL-37, hCAP18, and KLK5 in NHEKs treated with medium alone or HSV-2. As shown in Figure 3D, HSV-2 induced production of LL-37 in NHEKs. Similarly, HSV-2 increased expression of hCAP18 as well as KLK5, and these protein levels coincided with the induction of LL-37 in NHEKs (Figure 3D).

To further confirm the participation of LL-37 in this enhancement, we used RNA interference (siRNA) to block LL-37 production. Protein levels were quantified by western blotting followed by densitometry analysis. Transfection of siRNA targeting LL-37 induced an efficient knockdown in NHEKs (55% downregulation; Figure 4A). In line with the results of western blot analyses, siRNA-mediated interference of LL-37 in NHEKs significantly reduced enhancement of HIV infection in mLCs by supernatants from HSV-2-treated NHEKs, in comparison with control siRNA targeting an irrelevant sequence (Figure 4B). Based on these results, we conclude that enhanced HIV infection in mLCs by supernatants from HSV-2-treated NHEKs is, at least in part, mediated by LL-37.

Recently, TNF-α derived from KCs has also been shown to enhance HIV susceptibility of LCs (de Jong et al., 2008; Ogawa et al., 2009). In our experiments, however, TNF-α was not detected in culture supernatants from NHEKs treated by HSV-2 (data not shown), consistent with a recent report (de Jong et al., 2010). In addition, preincubation of supernatants from HSV-2-treated NHEKs with an anti-TNF-α neutralizing mAb, prior to exposing mLCs, did not affect HIV susceptibility in mLCs (Figure S4).

LL-37 Enhances Surface Expression of CD4 and CCR5 on mLCs

Previous studies have revealed that langerin expressed on LCs is a natural barrier to HIV infection because HIV virions captured by langerin are internalized into LC Birbeck granules and degraded (de Witte et al., 2007). In addition, APOBEC3G (A3G) and SAM domain and HD domain 1 (SAMHD1) has been recently shown to function as a potent postentry cellular restriction factor for HIV in DCs or LCs (Hrecka et al., 2011; Laguette et al., 2011; Ogawa et al., 2009; Pion et al., 2006). Therefore, we next examined whether LL-37 affects the expression levels of these molecules in mLCs. LL-37 stimulation did not affect the expression of langerin, A3G, or SAMHD1 (Figures 4C and 4D and Figure S5). In contrast, LL-37 significantly increased surface expression of CD4 and CCR5 in mLCs (Figure 4C). In addition, siRNA-mediated interference of LL-37 in NHEKs significantly reduced the enhancement of surface expression of CD4 and CCR5 in mLCs by supernatants from HSV-2-treated NHEKs, in comparison with control siRNA targeting an irrelevant sequence (Figure 4C). Thus, our results suggest that LL-37 enhances HIV infection in LCs by increasing surface expression of HIV receptors, rather than by modulating restriction factors such as langerin, A3G, or SAMHD1.

Since LL-37 upregulated surface expression of CD4 and CCR5 in LCs, we next examined whether LL-37 specifically enhanced R5-tropic HIV entry into LCs by using single-round infection assays with pseudotyped viruses containing a luciferase reporter and different envelope proteins (Env): Env from either R5 HIV-1 (JR-FL; R5), X4 HIV-1 (IIIB; X4), or vesicular stomatitis virus (VSV-G). As expected, we found that LL-37 pretreatment enhanced the infectivity of mLCs to R5-VSV in comparison with control siRNA targeting an irrelevant sequence (Figure 4B). Based on these results, we conclude that enhanced HIV infection in mLCs by supernatants from HSV-2-treated NHEKs is, at least in part, mediated by LL-37.
a dose-dependent manner, but LL-37 did not affect infection with VSV-G (Figure 5A). Consistent with previous findings (Kawamura et al., 2001), mLCs were resistant to X4-VSV, even after LL-37 treatment. These results provide direct evidence that LL-37, which upregulates surface expression of CD4 and CCR5 in LCs, promotes increased R5 HIV entry into these cells. Furthermore, similar effects of LL-37 were observed when mLCs were infected with R5 HIV primary isolates: JR-FL and AD8 (Figures 5B and 5C).

LL-37 Decreases HIV Infectivity in mDCs

We next examined whether LL-37 affects HIV infectivity in non-LC-like DCs. Similar to mLCs, LL-37 significantly upregulated surface expression of CD86 and CCR7 on monocyte-derived DCs (mDCs, Figure S3), indicating that LL-37 induces DC maturation. In marked contrast to mLCs, however, there was inhibition of HIV infection in mDCs when these cells were incubated with LL-37 prior to HIV exposure (Figure 6A), indicating that LL-37 affects on HIV infectivity are differentially regulated in LCs and DCs. LL-37 did not affect CD4 or A3G expression in DCs but markedly downregulated surface expression of CCR5 and DC-SIGN (Figures 6B and 6C). It has been shown that DC-SIGN binds HIV and plays a critical role for HIV replication in mDCs (Gringhuis et al., 2010). These results, in contrast to mLCs, suggest that decreased HIV infection levels observed in LL-37-treated mDCs may be due to downregulation of DC-SIGN and/or CCR5 on their cell surfaces. Taken together, our results indicated the presence of exclusive machinery to augment HIV infection by LL-37 in LC in contrast to that in CD4+ T cells (Bergman et al., 2007) and mDCs.

LL-37 Enhances HIV Transmission from LCs to CD4+ T Cells

We next examined whether LL-37 affected HIV transmission from LCs to cocultured CD4+ T cells. mLCs or mDCs were stimulated with AMPs or TNF-α for 24 hr, exposed to HIV-1Ba-L, and then cocultured with allogeneic CD4+ T cells for 12 days. Consistent with results showing that LL-37 increases HIV infection levels in mLCs (Figure 3A), preincubation of mLCs with LL-37 significantly enhanced subsequent HIV transmission from mLCs to CD4+ T cells in a dose-dependent manner; preincubation with other AMPs did not affect HIV transmission levels in mLC-T cell cocultures (Figure 7A). By contrast, HIV transmission from mDCs to CD4+ T cells was significantly decreased by preincubation of mDCs with LL-37 (Figure 7B), consistent with decreased HIV infection levels in LL-37-treated mDCs (Figure 6A).

DISCUSSION

LCs are generally believed to be one of the cell types that plays a pivotal role in the dissemination of virus during sexual transmission of HIV. To understand the biologic mechanisms by which HSV-2 increases acquisition of HIV, we tested the hypothesis that HSV-2 modulates LC susceptibility to HIV. As expected, we found that HSV-2 enhances HIV susceptibility of LCs within epithelial tissue (Figure 1), consistent with a recent finding that HSV-2 directly enhances HIV susceptibility in LCs (de Jong et al., 2010). However, in our ex vivo explant model, the percentage of HSV/HIV-coinfected LCs was quite low. Instead, our findings suggested that HSV-2 increases HIV susceptibility in LCs by indirect (i.e., epithelial cell-dependent) mechanisms. More specifically, we show here that LL-37 produced by HSV-2-infected epithelial cells enhances HIV infection of LC, most likely by increasing surface expression of CD4 and CCR5 on these cells.

There are conflicting prior reports on how defensins affect HIV infectivity. A variety of anti-HIV activities for hBD2 and hBD3 have been reported, including direct inhibition of virions, indirect inhibition of HIV replication, and downregulation of HIV coceptors (Klotman and Chang, 2006; Quiñones-Mateu et al., 2003). By contrast, other studies have shown increased HIV infection of

Figure 4. Silencing of LL-37 in HSV-2-Infected NHEKs Abrogates Enhanced HIV Infectivity in mLCs

(A) NHEKs were transfected with control or LL-37 siRNA and then exposed with or without HSV-2. Cells were lysed and then determined the expression of LL-37 by western blot analysis.

(B) mLCs were incubated with indicated culture supernatants for 12 hr and then exposed to R5 HIV. mLCs were collected 7 days after the HIV exposure, and HIV p24+ cells were assessed in langerin+ CD11c+ mLCs. Representative flow cytometric analyses of CD11c and p24 mAb double-stained cells are shown.

(C) mLCs were stimulated with TNF-α or LL-37 at the indicated concentrations or indicated culture supernatants for 24 hr. The expression of CD4, CCR5, and langerin was assessed by flow cytometry.

(D) The expression of A3G was determined by western blot analysis. Results are shown as means ± SD (n = 3) (*p < 0.05). All data shown represent at least two separate experiments. See also Figure S4.
primary CD4+ T cells by HD5 and HD6, and no effects on cell-surface HIV coreceptor expression by hBD1 and hBD2 (Klotman et al., 2008; Sun et al., 2005). These conflicting reports might be due to differences in experimental conditions or cell types used (e.g., PBMC or CD4+ T cells). Interestingly, we found that, unlike PBMC and CD4+ T cells, human β defensins did not affect HIV infectivity of LCs (Figure 3). Although no significant differences were detected, hBD2 and HDS tended to decrease HIV infectivity of LCs. In addition, consistent with a previous finding that LL-37 were detected, hBD2 and HD5 tended to decrease HIV infectivity.

HSV-2 can mediate both direct enhancing effects on HIV susceptibility in LCs as well as indirect enhancing effects via the luciferase activity was calculated as relative light units (A). To assess primary HIV infection levels, mLCs were collected 7 days after the HIV exposure, and HIV p24+ cells were assessed in langerin+ CD11c+ mLCs (upper panels, % of positive cells for HIV p24 in langerin+ CD11c+ mLCs; and lower panels, representative flow cytometric analyses following LL-37 stimulation). Results are shown as means ± SD (p < 0.05; **p < 0.01). All data shown represent at least two separate experiments. See also Figure S5.

EXPERIMENTAL PROCEDURES

Reagents

Cells were stimulated with synthetic AMPs (Peptide Institute) for 24 hr at the following concentrations: α defensin-5 (50 μg/ml), β defensin-1 (50 μg/ml), β defensin-2 (50 μg/ml), β defensin-3 (5 μg/ml), β defensin-4 (50 μg/ml), and LL-37 (50 μg/ml). Recombinant human (rh) TNF-α (5 μg/ml, R&D Systems) was used as a positive control in some experiments. Anti-TNF-α neutralizing mAbs (clone; MABTNF-A5) were purchased from BD PharMingen and used at a final concentration of 1 μg/ml.

Cell Preparation

NHEKs were purchased from Kurabo and cultured with EpiLife supplemented with insulin (10 μg/ml), rhEGF (epidermal growth factor, 0.1 ng/ml), hydrocortisone (0.3 μg/ml), gentamicin (50 μg/ml), amphotericin B (50 ng/ml), and bovine pituitary extract (0.4% V/V) (EpiLife-KG2 medium, all from Kurabo) in a humidified atmosphere with 5% CO2 at 37°C. mLCs and mDCs were cultured from adult plastic-adherent PBMCs as described previously (Kawamura et al., 2001). Briefly, monocytes were isolated by depletion of magnetically labeled nonmonocytes (Monocyte Isolation Kit II, Miltenyi Biotec) from plastic-adherent PBMCs obtained from healthy blood donors. Monocytes were cultured in RPMI 1640 (GIBCO BRL) supplemented with 10% heat-inactivated FBS (Cell Culture Technologies), 100 U/ml penicillin (GIBCO BRL), 100 μg/ml streptomycin (GIBCO BRL), 2 mM L-glutamine (GIBCO BRL) (complete medium) supplemented with 1,000 U/ml rhGM-CSF (R&D Systems), 1,000 U/ml rhIL-4 (R&D Systems), and with mLCs or without mDCs 10 ng/ml human platelet-derived TGF-β1 (R&D Systems) for 7 days. Since we have previously found the expression levels of E-cadherin+ cells and langerin+ cells in mLCs to be approximately 90% and 35%, respectively (Kawamura et al., 2001), cell sorting was performed at day 7 to isolate highly purified langerin-positive mLCs followed by staining with anti-langerin mAb (Immunotech), as previously described (Ogawa et al., 2009). Alternatively, mLCs were identified by gating langerin-positive cells in flow cytometric analyses.

HSV-2 Exposure of Cells In Vitro and Skin Explants Ex Vivo

Purified, pelleted, and titered HSV-2 G strain (stock at 10^8 PFU/ml) was purchased from Advanced Biotechnologies. HSV-2 strain 186 (stock at 1.5 × 10^8 PFU/ml) was a gift from Yukihiro Nishiyama (Nagoya University Graduate School of Medicine, Nagoya, Japan). A total of 2 × 10^5 mLCs or mDCs, or 5 × 10^6 NHEK, were cultured with different concentrations of HSV-2 (10^4–8 PFU) at 37°C, and then washed three times. In some experiments using the supernatants from NHEKs treated by HSV-2, culture supernatants
Figure 6. LL-37 Decreases HIV Susceptibility in mDCs
(A) mDCs were stimulated with the indicated AMPs or rhTNF-α 24 hr prior to HIV exposure. To determine HIV infection levels, mDCs were collected 7 days after HIV exposure, and HIV p24+ cells were assessed in CD11c+ mDCs. Representative flow cytometric analyses are shown.

(B) mDCs were stimulated with TNF-α or LL-37 at the indicated concentrations for 24 hr. The expression of CD4, CCR5, and DC-SIGN was assessed by flow cytometry.

(C) The expression of A3G was determined by western blot analysis. Results are shown as means ± SD (n = 3) (*p < 0.05; **p < 0.01). All data shown represent at least two separate experiments.

containing HSV-2 were filtered by PALL Acrodisc 32 mm Syringe Filter with 0.1 μm Supor Membrane to remove viruses. For control infection, the same batch of virus was inactivated at 56°C for 10 min and the same volume as the active virus was added to cells. For exposure of epithelial tissue explants, 50 μl droplets containing different concentrations of HSV-2 were placed on the inside surfaces of sterile plastic culture dish covers. Explants were draped over droplets with the basal epithelial cell surface facing downward. Virus and explants were incubated together in this manner at 37°C in a humidified 5% CO2 environment for 2 hr. Explants were washed in three separate wells in 6-well plates containing sterile PBS and then floated with the basal epithelial cell sides down in 12-well plates containing 2 ml of complete medium, without exogenous stimulants or cytokines.

HIV Infection of Cells In Vitro and Skin Explants Ex Vivo
Purified, pelleted, and titered HIV-1Ba-L, an R5 HIV laboratory isolate (stock at 3 × 10^10 virus particles/ml), was purchased from Advanced Biotechnologies. Molecular clones RS HIV primary isolates (JR-FL and AD8) were prepared as described previously (Koyanagi et al., 1997; Theodore et al., 1996). Briefly, 293 T cells were transfected with 30 μg of HIV-1 proviral DNA. One day after transfection, the medium was replaced with fresh RPMI 1640 medium supplemented with 10% FCS, and then 2 days later, the viruses were recovered, filtered through a membrane (pore size, 0.22 mm), and assayed for HIV-1 p24 gag content by ELISA. The titer of each virus stock was determined by endpoint titer determination of 3-fold serial dilutions on PHA-activated PBMC from a single donor.

Pseudotyped Virus Infection and Luciferase Assay
To prepare pseudotyped viruses with Env from either HIV-1 (IIIb, JR-FL, or VSV), 293 T cells were cotransfected with the Env expression plasmid DNA, pLET, pJRFLenv, or pMD.G, respectively, and with pNL4-3 carrying the luciferase gene as described previously (Sato et al., 2008). The culture supernatants were harvested and then filtrated to produce virus solutions at 48 hr posttransfection. To measure the infectivity of Env-pseudotyped virus, mLCs were incubated with JR-FL Env- or IIIb Env-pseudotyped virus, containing 20 ng of p24CA, for 72 hr. The Picagene luciferase assay kit (Toyo Ink) was used to perform luciferase assays, following the manufacturer’s protocols. Activity was measured with a 1420 ARVOSX multilabel counter (Perkin Elmer) and normalized to the protein content of each lysate, measured with a Coomassie (Bradford) protein assay kit (Pierce).

Flow Cytometry
Single-cell suspensions were stained using the following anti-human mAb: anti-CD83 (BD Biosciences-PharMingen), anti-CD86 (BD Biosciences-PharMingen), anti-CD4 (Beckman Coulter), anti-CCR5 (R&D), anti-DC-sign (R&D), anti-CCR7 (R&D) directly conjugated to FITC, anti-langerin (Immuno-tech) directly conjugated to PE, and anti-CD11c (Becton Dickinson) directly conjugated to allophycocyanin. Cells were incubated with Abs for 30 min at 4°C and then washed three times in staining buffer, and examined by FACScaliber using propidium iodide (Sigma) to exclude the dead cells in the surface staining.

To specifically identify HIV- or HSV-infected cells on a single-cell level, HIV p24 or HSV gD intracellular staining was performed, respectively. Epidermal LCs, mLCs, and mDCs were collected at the indicated days after HIV exposure and then washed three times in staining buffer, and then incubated with 10 μg/ml allophycocyanin-conjugated mouse anti-human CD11c mAb, and with mLCs or without mDCs PE-conjugated mouse anti-human langerin mAb and for 30 min at 4°C. Cells were then washed three times in staining buffer and fixed and permeabilized with Cytofix/Cytoperm reagents (BD Biosciences-PharMingen) for 20 min at 4°C. Cells were then washed three times in Perm-Wash (BD Biosciences-PharMingen), incubated with FITC- or PE-conjugated mouse anti-HIV p24 mAb (Beckman Coulter) and/or FITC-conjugated mouse anti-HSV gD mAb (Argene) diluted for 30 min at 4°C, and washed three times in Perm-Wash, with the quantified numbers of HIV- or HSV-infected cells determined by FACScaliber.
RNA Interference Using siRNA
The delivery of siRNA into NHEKs was performed by DharmaFECT 3 siRNA Transfection Reagent (Dharmacon). Cells were transfected with siRNAs at a final concentration of 50 nM. The siRNAs used in this study were ON-TARGETplus nontargeting pool (Dharmacon # D 001810–10) for control siRNA and ON-TARGETplus SMARTpool siRNA Human CAMP (Dharmacon #L-019790–00) for LL-37 siRNA.

Real-Time Quantitative RT-PCR Analysis
Relative mRNA expression was determined by real-time PCR using an ABI PRISM 5500 Sequence Detection System (Applied Biosystems) with SYBR Green I dye (QIAGEN) according to the manufacturer’s instructions. Total RNA was isolated using TRizol (Invitrogen Life Technologies), and cDNA was synthesized using the SuperScript system (Invitrogen Life Technologies). Primers corresponding to human α defensin-5, defensin-6, human β defensin-1, β defensin-2, β defensin-3, β defensin-4, LL-37, and GAPDH were designed by Takara Bio, Inc. Cycle threshold numbers (Ct) were derived from the exponential phase of the PCR amplification. Fold differences in the expression of gene x in the cell populations y and z were derived by 2k, where k = (Ct x − CtG3PDH) y / (Ct x − CtG3PDH) z.

ELISA
NHEKs were exposed to live HSV-2 (10⁶ PFU) or heat-inactivated HSV-2 for 1 hr, and then washed three times. Following culture in medium for the indicated days, the culture supernatants were collected after centrifugation and then washed three times. Following culture in medium for the indicated days. Results are shown as means plus or minus SD (n = 3). *p < 0.05; **p < 0.01. All data shown represent at least two separate experiments.

SUPPLEMENTAL INFORMATION
Supplemental Information includes five figures and can be found with this article at http://dx.doi.org/10.1016/j.chom.2012.12.002.

ACKNOWLEDGMENTS
We would like to thank Kazutoshi Harada and Naotaka Shibagaki for their helpful discussions; Miyuki Ogino and Naoko Misawa for technical assistance; and Takashi Fujita, Keizo Tomonaga, and Klaus Strebel for providing reagents. These studies were supported in part by a grant from the Ministry of Education and Science of the Japanese Government. Y.O. performed experiments and analyzed data. K.Y. and Y.K. codirected experiments. A.B. codirected experiments and wrote the manuscript. S.S. codirected experiments. T.M. and R.A. performed experiments and analyzed data. T.K. directed and performed experiments, analyzed data, and wrote the manuscript. T.M. and R.A. performed experiments and analyzed data. P.G. and A.Y. performed experiments. K.M. contributed analytical tools.

Received: June 28, 2012
Revised: September 18, 2012
Accepted: December 12, 2012
Published: January 16, 2013

REFERENCES
Cell Host & Microbe

LL-37 Enhances HIV Infection of Langerhans Cells

