Graduate Program in Cellular and Molecular Pathology
2015-2016

Department of Pathology, Microbiology and Immunology
FACULTY ACCEPTING STUDENTS
2015-2016

Bock, Paul E., Ph.D.
Professor of Pathology
Professor of Medicine

Office: 1205 Stallworth Rehabilitation Hospital
Phone: 615-343-9863
Email: paul.bock@vanderbilt.edu
Website: N/A

Research Key Words: Blood coagulation, Fibrinolysis, Enzyme mechanisms, Protein structure, Biochemistry, Biophysics, Fluorescence spectroscopy, Bacterial virulence factors, Pathology, Infectious diseases, Cardiovascular diseases, Bacteria, Biochemistry, Enzyme action, Pathology, Protein Structure, Spectroscopy

Research Description: Research in this laboratory is focused on molecular mechanisms of human blood coagulation and fibrinolysis and their roles in cardiovascular and infectious diseases. Biochemical and biophysical techniques are being used to determine how the proteolytic enzymes of blood coagulation and fibrinolysis are regulated through interactions with specific physiological and pathological proteins, and the membrane surfaces of vascular cells. Present work focuses on three areas: (1) The mechanism by which coagulation factor Va regulates the formation of the active blood clotting proteinase, thrombin, from its inactive precursor, prothrombin, and the mechanisms of thrombin regulation; (2) The mechanism of non-proteolytic activation of prothrombin by the Streptococcus aureus protein, staphyllocoagulase and its homologs, and their roles in the molecular pathology of infections of heart valves in acute bacterial endocarditis; and (3) The mechanism of activation of plasminogen by the streptococcal protein, streptokinase, which is the basis for its critical role as a virulence factor in life-threatening streptococcal infections. Fluorescence spectroscopy, protein chemistry, enzyme kinetics, and molecular biology approaches are being used to define the roles of protein conformational changes and the assembly of macromolecular complexes in these mechanisms. The goal of the research is to develop molecular descriptions of these systems, which are necessary for development of new therapeutic approaches for treatment of thrombosis, and for inhibitory targeting of bacterial pathogenicity factors that usurp the human coagulation and fibrinolytic systems to propagate infectious diseases.

Wiles, KG, Panizzi, P, Kroh, HK, Bock, PE. Skizzle is a novel plasminogen- and plasmin-binding protein from Streptococcus agalactiae that targets proteins of human fibrinolysis to promote plasmin generation. J Biol Chem, 285(27), 21153-64, 2010

Kroh, HK, Panizzi, P, Bock, PE. Von Willebrand factor-binding protein is a hysteretic conformational activator of prothrombin. Proc Natl Acad Sci U S A, 106(19), 7786-91, 2009

CMP Graduate Program Guidelines • Page 2 •
Eischen, Christine M., Ph.D.

Associate Professor of Pathology
Associate Professor of Cancer Biology

Office: CC-2210 MCN
Phone: 343-2303
Email: christine.eischen@vanderbilt.edu
Website: http://CC-2210 MCN

Research Key Words: Apoptosis, Cancer, Cell cycle, Chromosome, DNA repair, Malignancy, Mouse, Transformation

Research Description: The primary focus of the Eischen lab is on tumor initiation. We want to know how does a normal cell become a cancer cell. Specifically, we want to know what are the genes and pathways that contribute to or inhibit cellular transformation. We study the pathways, proteins, and recently, the miRNA that contribute to or inhibit tumor development. Lymphoma is the cancer that we have almost 2 decades of experience studying, and multiple projects utilize this expertise and several mouse models of lymphoma. However, lung, breast, and ovarian carcinomas are also studied in the lab. Currently, there are three major areas of research focus that overlap in the Eischen lab. The first area of research focus is on the oncogene Myc. We study Myc and its roles in proliferation, transformation, tumor development, and tumor cell maintenance. A large part of studying Myc is centered on the apoptosis that it causes when overexpressed in normal, untransformed cells, and the transcription it induces to drive proliferation. We recently discovered a novel regulator of Myc called MTBP. The second area of research focuses on Mdm2 and Mdmx, two oncogenes best known for their negative regulation of the p53 tumor suppressor, and their roles in tumorigenesis. We discovered that both Mdm2 and Mdmx have p53-independent functions that contribute to tumorigenesis. We determined that Mdm2 and Mdmx regulate double-strand DNA break repair through interaction with Nbs1, a component of the Mre11/Rad50/Nbs1 DNA repair complex. We observed that increased expression of Mdm2 or Mdmx induces genome instability and increases transformation through a mechanism that is independent of p53. The third area of research in the lab centers on the contribution miRNA have in tumor development. miRNA are small non-coding RNA that inhibit protein translation. We are utilizing lymphoma and lung cancer models to study miRNA in cancer. Our investigations focus on oncogene regulation of miRNA and whether they inhibit or contribute to tumor development.

Publications:

Adams, CM, Eischen, CM. Inactivation of p53 is insufficient to allow B cells and B cell lymphomas to survive without Dicer. Cancer Res., , 2014

Carrillo, AM, Bouska, A, Arrate, MP, Eischen, CM. Mdmx promotes genomic instability independent of p53 and Mdm2. Oncogene, 0, 2014

Fogo, Agnes B. , M.D.

Director Division of Renal Pathology
Professor of Pathology
Professor of Pediatrics
Professor of Medicine

Office:
Phone: 615-322-3114
Email: Agnes.Fogo@vanderbilt.edu
Website: N/A

Research Key Words: progression of kidney disease angiotensin PAI-1, regression of sclerosis, Kidney, Knockout, Pathology

Research Description: Research efforts primarily concern renal pathology and involve: 1) basic research in mechanisms and pathophysiology of progression of chronic renal disease; including regression/remodeling of sclerosis; 2) basic research in mechanisms and pathophysiology of the renin angiotensin system; and 3) applied renal pathology with emphasis on prognostic features in minimal change disease/focal glomerulosclerosis.

Chronic rat animal models and knock-out mice are used to investigate the interactions of fibrotic and thrombotic mechanisms. Our work focuses on contributions of the renin angiotensin system to structural damage, and its interactions with other growth factors, and with mechanisms of thrombosis (i.e. plasmin/plasminogen activator system). Approaches include classical pathology, molecular biology and functional assessments.

Fogo, AB. The targeted podocyte. J Clin Invest, 121(6), 2142-5, 2011
Gailani, David, M.D.

Professor of Pathology
Professor of Medicine

Office: 538 Preston Research Building
Phone: (615) 936-1505
Email: dave.gailani@vanderbilt.edu
Website: N/A

Research Key Words: Biochemistry, Enzyme action, Gene regulation, Knockout, Mouse, Polymorphism, Protein structure

Research Description: A dynamic balance exists between the processes that form a blood clot at the site of blood vessel injury (coagulation) and the processes responsible for removing the clot once healing has occurred (fibrinolysis). This equilibrium, referred to as hemostasis, is required to prevent excessive blood loss from a wound (bleeding) while avoiding occlusion of normal blood vessels (thrombosis). My laboratory is involved in studying the contribution of certain plasma clotting factors to the formation of fibrin clots in normal and pathologic conditions. We are particularly interested in the plasma serine proteases factors IX and XI. These enzymes appear to be required for consolidating the hemostatic process after initial clot formation. Excessive activity of either protein has been linked to formation of pathologic blood vessel thrombosis. Utilizing a combination of site-directed mutagenesis, production of recombinant proteins in mammalian tissue culture, enzymology and classic coagulation assays we are investigating structure/function relationships as they relate to the activation, the activity, and binding interactions involving factors IX and XI. We are applying similar approaches to investigations of the proteases responsible for converting inactive factor XI to the active form factor Xla.

More recently, we have been investigating the contributions of factors IX and XI to hemostasis and thrombosis in vivo, using factor IX and factor XI deficient mice. These proteins appear to play important roles in the formation of abnormal occlusive thrombi in mouse models, and may be attractive targets for drugs to prevent or treat blood vessel thrombosis in human patients.

Publications:

Kravtsov, DV, Monahan, PE, Gailani, D. A classification system for cross-reactive material-negative factor XI deficiency. Blood, 105(12), 4671-3, 2005

Lannigan, Deborah, Ph.D.

Associate Professor of Pathology, Microbiology and Immunology

Office: 712B PRB
Phone: 615-322-4560
Email: deborah.lannigan@vanderbilt.edu
Website: http://lanniganlab.com

Research Key Words:
Mammary gland development; Breast Cancer; Signal Transduction; Drug Development

Research Description:
The laboratory uses techniques from modern molecular biology and biochemistry, microscopy, primary 3D culture of human breast tissue and rodent models to identify mechanisms that are important in normal development and that are coopted in breast cancer.

Publications:
McDonald, Oliver, M.D., Ph.D.

Assistant Professor of Pathology, Microbiology and Immunology

Office: Medical Center North, CC-2201A
Phone: 615-343-1101
Email: oliver.g.mcdonald@vanderbilt.edu
Website: N/A

Research Key Words: Epigenetics, cancer, chromatin

Research Description: Epigenetic reprogramming of chromatin structure during neoplastic transformation and malignant progression.

Gan, Q, Yoshida, T, McDonald, OG, Owens, GK. Concise review: epigenetic mechanisms contribute to pluripotency and cell lineage determination of embryonic stem cells. Stem Cells, 25(1), 2-9, 2007

Stricker, Thomas P., M.D., Ph.D.

Assistant Professor of Pathology, Microbiology and Immunology

Office: CC-3309A MCN
Phone: (615) 343 4008
Email: thomas.stricker@vanderbilt.edu
Website:

Research Key Words: Breast Cancer, Sarcoma, chromatin, transcriptional regulation, next generation sequencing, RNAseq, ChIPseq, Exome sequencing

Research Description: Large cancer re-sequencing projects like the TCGA have shown that transcriptional regulators, including chromatin readers, chromatin modifying enzymes and transcription factors, are recurrently mutated in many different cancers. We are interested in understanding how the function of the genes, how they shape the transcriptional programs in cancer cells, and how mutation of these genes contributed to carcinogenesis.
Ware, Lorraine B. , M.D.

Associate Professor of Medicine
Associate Professor of Pathology, Microbiology and Immunology

Office: B1321 MCN
Phone: 322 7872
Email: lorraine.b.ware@vanderbilt.edu
Website: N/A

Research Key Words: acute lung injury, coagulation, fibrinolysis, biomarkers, ARDS, sepsis, alveolar epithelium, alveolar epithelial fluid transport, respiratory failure

Research Description: Our lab does basic and translational research on the role of the alveolar epithelium in the pathogenesis and resolution of acute lung injury and the acute respiratory distress syndrome. Current projects include investigation of the role of alveolar epithelium in modulating intra-alveolar fibrin deposition in the injured lung, translational studies of biomarkers for diagnosis and prognosis in acute lung injury and studies of the pathogenesis and biomarkers of reperfusion pulmonary edema after lung transplantation.

Publications:

Sebag, SC, Bastarache, JA, Ware, LB. Mechanical stretch inhibits lipopolysaccharide (LPS)-induced KC and tissue factor (TF) expression while increasing procoagulant activity in murine lung epithelial cells. J Biol Chem, , 2013

Bastarache, JA, Sebag, SC, Clune, JK, Grove, BS, Lawson, WE, Janz, DR, Roberts, LJ, Dworski, R, Mackman, N, Ware, LB. Low levels of tissue factor lead to alveolar haemorrhage, potentiating murine acute lung injury and oxidative stress. Thorax, 67(12), 1032-9, 2012

Bastarache, JA, Ware, LB, Girard, TD, Wheeler, AP, Rice, TW. Markers of Inflammation and Coagulation May Be Modulated by Enteral Feeding Strategy. JPEN J Parenter Enteral Nutr, , 2012
Weaver, Alissa M., M.D., Ph.D.

Associate Professor of Cancer Biology
Assistant Professor of Pathology

Office: 748 PRB
Phone: 615-936-3529
Email: alissa.weaver@vanderbilt.edu
Website: http://people.vanderbilt.edu/~alissa.weaver/

Research Key Words: actin, cortactin, WASp family, cell motility, cancer, invasion, metastasis, migration, src kinases, Arp2/3 complex, breast cancer, chemotaxis, live cell imaging, fluorescence imaging, cytoskeleton, genetic manipulation, microscopy, Biochemistry, Cancer, Kinase, Malignancy, Membrane, Molecu

Research Description: Cancer metastasis—the spread of cancer cells to distant organs—is what kills the majority of cancer patients. In order for cells to metastasize, they must acquire an invasive and motile phenotype, degrading and moving through tissue barriers. In addition, they must be able to survive and grow at distant sites in the body. The Weaver laboratory studies all aspects of this process. We are particularly focused on how secretion of small extracellular vesicles called exosomes from cells promotes aggressive, invasive behavior and facilitates tumor growth and metastasis. Specific projects include: 1) Induction of invasive protrusion formation and exosome secretion by deregulated signaling; 2) The role of exosome secretion in tumor progression; and 3) Trafficking of RNAs in cancer exosomes.

Publications:

Benesh, EC, Miller, PM, Pfaltzgraff, ER, Grega-Larson, NE, Hager, HA, Sung, BH, Qu, X, Baldwin, HS, Weaver, AM, Bader, DM. Bves and NDRG4 regulate directional epicardial cell migration through autocrine extracellular matrix deposition. Mol Biol Cell, 24(22), 3496-510, 2013

Hoshino, D, Branch, KM, Weaver, AM. Signaling inputs to invadopodia and podosomes. J Cell Sci, 126(Pt 14), 2979-89, 2013

Young, Pampee Paul, M.D., Ph.D.

Assistant Professor of Pathology
Assistant Professor of Medicine

Office: C2217 MCN
Phone: (615) 936-1098
Email: pampee.young@vanderbilt.edu
Website: N/A

Research Key Words: Regenerative Medicine, Wound healing, Mesenchymal stem cells (MSCs), Fibrosis, Wnt pathway, Cardiac regeneration, Plaque instability, Atheroma progression

Research Description:
The focus of research is regenerative medicine and vascular protection. We are interested in molecular and cellular mechanisms of stem cell mediated wound and cardiac repair. Coupled with that, our work also focuses on molecular targets of fibrosis and endogenous factors which regulate fibroblast activation. We have identified that the Wnt pathway is central to both stem cell-mediated repair and controlling fibrosis. A parallel, non-overlapping interest lies in vascular disease. We have identified a protein that regulates atheroma progression and are working on gaining an understanding on how to use this factor to prevent or reverse disease progression.

Project 1
An injured organ will ideally undergo repair such that the end result is a restoration of architecture and function. However, more frequently, the repair mechanisms result in fibrosis resulting in organ and tissue dysfunction. We are working on clarifying fibroblast function during the repair process and understanding how Wnt signaling and the protein sFRP2 regulates their biology. We utilize several wound models, including skin, heart, kidney injuries as in vivo model systems to study this question.

Project 2
Mesenchymal stem cells hold much promise as tools to mediate repair. We have recently identified that Wnt pathway inhibition regulates MSC biology. We are identifying novel methods to generate MSCs as well as understanding how we can modulate their cellular behavior to improve cardiovascular recovery and for orthopedic applications.

Project 3
We have identified that SPRR3 is a mechanosensitive protein expressed by vascular smooth muscle cells in blood vessels and cardiac fibroblasts. Our work has determined that loss of SPRR3 accelerates atheroma progression and plaque instability. We are working on designing SPRR3 based therapies to determine if we can halt disease progression.

3. Saraswati S, Guo Y, Atkinson J, and Young PP. Prolonged hypoxia induces MCT4 expression in MSCs resulting in a secretome that is deleterious to cardiovascular repair. Stem Cells, 2015, 33:1333-44

Zijlstra, Andries, Ph.D.

Assistant Professor of Pathology
Assistant Professor of Cancer Biology

Office: C-2102C MCN
Phone: (615) 322 3295
Email: andries.zijlstra@vanderbilt.edu
Website: http://https://my.vanderbilt.edu/zijlstra

Research Key Words: Cancer, Metastasis, Dissemination, Clinical Translation, Adhesion, Invasion, Migration, Tetraspanin, surface protein organization, Integrin, Tumor Biology, Cancer, Malignancy, Membrane, Translation, Vascular Biology

Research Description: Cancer Metastasis is the primary cause of cancer-related deaths. Research in the laboratory is dedicated to understanding the molecular biology of cancer metastasis and translating this knowledge to clinical application.

The research program is based on three central themes: A) Investigating the molecular mechanisms of tumor cell migration, B) Evaluating and validating these mechanisms in the patient population, and C) developing research and clinical tools to advance our studies.

The laboratory pursues three primary research objectives: 1) Characterization of the molecular mechanism of migration regulated by the tetraspanin CD151, 2) Identification and characterization of the metastatic cell population within a primary tumor, and 3) clinical implementation of molecular markers of migration as biomarkers of tumor progression and metastasis.

Specific mechanistic studies include: The regulation of migration by tetraspanins: Among the molecular regulators of motility, we have found the tetraspanin CD151 to be a particularly critical component of metastasis. Interfering with its function through antibody binding inhibits extracellular matrix mediated migration and blocks >95% of the tumor cell dissemination in a spontaneous metastasis model. Using a newly-established in vivo motility assay, we have been able to demonstrate that altering the function of CD151 results in complete inhibition of in vivo motility for several tumor cell types. Ongoing studies try to determine the molecular mechanism by which this regulation of migration occurs.

Specific translational studies include: Molecular mechanisms of migration contribute to metastasis and subsequently thought to be central to the cancer progression poor clinical outcome for cancer patients. We have developed a series of preclinical tests that determine the status of pro migratory mechanisms within the tumor. Using this technology it becomes possible to diagnose patients with aggressive disease, predict clinical outcome, and possible anticipate treatment response. Ongoing studies are expanding biomarker studies to a variety of cancers, including renal, bladder, prostate, lung, and breast cancer.

tetraspanin CD151 can inhibit tumor cell motility upon clustering and is a clinical indicator of prostate cancer progression. Cancer Res, 74(1), 173-87, 2014

Ashby, WJ, Wikswo, JP, Zijlstra, A. Magnetically attachable stencils and the non-destructive analysis of the contribution made by the underlying matrix to cell migration. Biomaterials, 33(33), 8189-203, 2012

<table>
<thead>
<tr>
<th>Name</th>
<th>Room</th>
<th>Phone No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abel, Ty, M.D., Ph.D.</td>
<td>U-2216A MCN</td>
<td>2-9451</td>
</tr>
<tr>
<td>Atkinson, James B., M.D., Ph.D.</td>
<td>C-3320 MCN</td>
<td>3-9576</td>
</tr>
<tr>
<td>Bock, Paul E., Ph.D.</td>
<td>1205A- Stallworth</td>
<td>3-9863</td>
</tr>
<tr>
<td>Boyd, Kelli, Ph.D., D.V.M.</td>
<td>AA-6220 MCN</td>
<td>2-3596</td>
</tr>
<tr>
<td>Cates, Justin, M.D., Ph.D.</td>
<td>C-2310C</td>
<td>6-6694</td>
</tr>
<tr>
<td>Davidson, Jeffrey M., Ph.D.</td>
<td>F-527 Acre Bldg.</td>
<td>873-7087</td>
</tr>
<tr>
<td>Eischen, Christine, Ph.D.</td>
<td>CC-2210 MCN</td>
<td>3-2303</td>
</tr>
<tr>
<td>Fogo, Agnes B., M.D.</td>
<td>C-3310 MCN</td>
<td>2-3114</td>
</tr>
<tr>
<td>Gailani, David, M.D.</td>
<td>538 PRB</td>
<td>6-1505</td>
</tr>
<tr>
<td>Gumina, Richard, M.D., Ph.D.</td>
<td>383 PRB</td>
<td>6-5863</td>
</tr>
<tr>
<td>Head, David R., M.D.</td>
<td>4800B TVC</td>
<td>3-9049</td>
</tr>
<tr>
<td>Hudson, Billy G., Ph.D.</td>
<td>CC-2213 MCN</td>
<td>3-8845</td>
</tr>
<tr>
<td>Jerome, Walter G. (Jay), Ph.D.</td>
<td>B-3102 MCN</td>
<td>2-7298</td>
</tr>
<tr>
<td>Kim, Annette M., Ph.D.</td>
<td>4603A TVC.</td>
<td>3-7745</td>
</tr>
<tr>
<td>Lannigan, Deborah, Ph.D.</td>
<td>712 B PRB</td>
<td>2-5460</td>
</tr>
<tr>
<td>Majka, Susan, Ph.D.</td>
<td>P405 MRBIV</td>
<td>2-5206</td>
</tr>
<tr>
<td>Major, Amy, Ph.D.</td>
<td>383 PRB</td>
<td>6-1816</td>
</tr>
<tr>
<td>McDonald, Oliver, M.D., Ph.D.</td>
<td>CC-2201A</td>
<td>3-1101</td>
</tr>
<tr>
<td>Mitchell, William M., M.D., Ph.D.</td>
<td>U-3302 MCN</td>
<td>2-3238</td>
</tr>
<tr>
<td>Mosse, Claudio, M.D., Ph.D.</td>
<td>A-19 Acre Bldg.</td>
<td>873-6976</td>
</tr>
<tr>
<td>Osteen, Kevin G., Ph.D.</td>
<td>B-1100 MCN</td>
<td>2-4196</td>
</tr>
<tr>
<td>Sanders, Melinda E., M.D.</td>
<td>4918A TVC</td>
<td>2-1410</td>
</tr>
<tr>
<td>Santoro, Samuel A., M.D., Ph.D.</td>
<td>C-3322 MCN</td>
<td>2-3234</td>
</tr>
<tr>
<td>Schoenecker, Jonathan, Ph.D.</td>
<td>4202 DOT</td>
<td>3-5875</td>
</tr>
<tr>
<td>Seegmiller, Adam, M.D., Ph.D.</td>
<td>4918B TVC</td>
<td>2-0858</td>
</tr>
<tr>
<td>Sephel, Gregg C., Ph.D.</td>
<td>F-318 Acre Bldg.</td>
<td>873-7524</td>
</tr>
<tr>
<td>Shepherd, Virginia L., Ph.D.</td>
<td>F-423 Acre Bldg.</td>
<td>873-7098</td>
</tr>
<tr>
<td>Strickler, Thomas, M.D., Ph.D.</td>
<td>CC-3309 MCN</td>
<td>3-4008</td>
</tr>
<tr>
<td>Swift, Larry L., Ph.D.</td>
<td>CC-3327 MCN</td>
<td>3-2646</td>
</tr>
<tr>
<td>Valentine, William M., D.V.M., Ph.D.</td>
<td>CC-3303 MCN</td>
<td>3-5836</td>
</tr>
<tr>
<td>Verhamme, Ingrid M., Ph.D.</td>
<td>T-2309 MCN</td>
<td>3-6563</td>
</tr>
<tr>
<td>Wallace, Jeanne, D.V.M.</td>
<td>AA-6224 MCN</td>
<td>2-6852</td>
</tr>
<tr>
<td>Ware, Lorraine B., M.D.</td>
<td>B-1321 MCN</td>
<td>2-3412</td>
</tr>
<tr>
<td>Weaver, Alissa M., M.D., Ph.D.</td>
<td>748 PRB</td>
<td>6-3529</td>
</tr>
<tr>
<td>Woodworth, Alison, Ph.D.</td>
<td>4918EA TVC</td>
<td>2-0905</td>
</tr>
<tr>
<td>Young, Pampee, M.D., Ph.D.</td>
<td>C-2217 MCN</td>
<td>6-1098</td>
</tr>
<tr>
<td>Zijlstra, Andries, Ph.D.</td>
<td>C-2104A MCN</td>
<td>2-3295</td>
</tr>
<tr>
<td>Zutter, Mary, M.D.</td>
<td>T-3218B MCN</td>
<td>3-1095</td>
</tr>
</tbody>
</table>
OVERVIEW OF THE GRADUATE PROGRAM IN CELLULAR AND MOLECULAR PATHOLOGY

I. GOALS

The graduate program in Cellular and Molecular Pathology provides training in biochemical, cell and molecular biological research to elucidate the fundamental mechanisms of human disease processes. The program emphasizes training in experimental laboratory investigation leading to the Ph.D. degree for students interested in pursuing careers in basic biomedical research and teaching. Graduate study in this area offers students the opportunity to integrate principles of molecular genetics, cell biology, biochemistry, and biophysics into research relevant to improving the quality of life through the discovery of new avenues for treatment of disease. The research interests of the faculty are diverse and include vascular biology, tumor pathology, neurobiology, infectious disease, and tissue repair and remodeling. Major areas of research in the department are vascular biology and tumor pathology.

II. PROGRAM

A. First Year

The first year of graduate study in Biomedical Sciences at Vanderbilt is under the direction of the Interdisciplinary Graduate Program (IGP). All graduate students in the Biomedical Sciences, regardless of their specific interests will be enrolled in this program for their first year of study. During this year, the students take a common curriculum that is designed to provide a solid core of knowledge in all of the disciplines of basic biomedical science. Even though the students entering this program come from diverse academic backgrounds, it is the aim of this program to prepare students to enter any department with the foundation to perform effectively in any advanced course and to complete the requirements for the Ph.D. degree. During the first year of study, students identify the laboratory in which they will pursue their thesis research through research project rotations, undertaken in each of four laboratories of their choice. At the end of the Spring semester, the students declare their choice of a department and laboratory for their thesis research.

B. Course Requirements — Ph.D.

Required:
- Pathology 8331 Seminar in Experimental Pathology
- Pathology 8332 Current Topics in Experimental Pathology
- M&IM 8335 Research Proposals: Preparation & Critical Review
- Pathology 8351 Cellular and Molecular Basis of Disease
- Pathology 8352 Cellular and Molecular Basis of Disease
- Pathology 8999 Non-Candidate Research (research prior to entering into candidacy)
- Pathology 9999 Research (research after entering into candidacy)

Elective courses in the Department of Pathology:
- Pathology 8322 Experimental Methods in Pathology
- Pathology 8335 Molecular Pathology of Extracellular Matrix
- Pathology 8337 Cellular and Molecular Basis of Vascular Disease

Students must make a grade of B or better in PATH 8351 and 8352 (Cellular and Molecular Basis of Disease), complete at least 24 hours of didactic work, and maintain an overall B average in didactic courses. Satisfactory (S) and unsatisfactory (U) grades are given for Pathology 8999 and Pathology 9999. Three unsatisfactory grades will result in dismissal from the program.
C. COURSE REQUIREMENTS — MSTP (Medical Scientist Training Program)

Required

MEDICAL SCHOOL (VSMI and VSMII years)
- Foundations of Medical Knowledge (VSMI)
- Foundations of Clinical Care (VSMII)
- MSTP Seminar (IGP 8310) - Fall and Spring of VSMI and VSMII years

GRADUATE SCHOOL
- Seminars in Experimental Pathology (PATH 8331)
- Current Topics in Experimental Pathology (PATH 8332)
- One semester of Cellular & Molecular Basis of Disease (either PATH 8351 or PATH 8352)
- Research Proposals: Preparation & Critical Review (M&IM 8335)
- MSTP Seminar
- Electives

D. Selection of Thesis Advisory Committee

The Thesis Advisory Committee will administer both Phase I and Phase II of the Qualifying Exam. The committee will consist of at least five faculty members, with at least three members, including the Thesis Advisor, being from the Division of Investigative Pathology (IP), Department of PMI and at least one but no more than two with Graduate Faculty Appointments from other programs/departments. The members from the IP Division may have primary or secondary appointments in PMI. In selecting members of the Thesis Advisory Committee, it should be kept in mind that this committee will provide oversight and direction for the student through the final defense. Consequently, members should be selected carefully, based on their specific areas of expertise and their expected contributions in advising the student during the dissertation research. In the first step of the selection process the student and preceptor, in consultation with the DGS, should develop a list of faculty for the committee. When the list has been approved by the preceptor and the DGS, the student should then contact the faculty to determine their willingness and availability to serve. Faculty members should not be asked to serve on the committee until the list has been approved by both the preceptor and the DGS. The Chair of the Thesis Advisory Committee should be selected by the Thesis Advisor and the student in consultation with the DGS, prior to the first committee meeting. In general, the Chair of the committee should hold a primary faculty appointment in the Department of Pathology, Microbiology and Immunology; faculty holding secondary appointments in the Department may serve as Chair only with the approval of the DGS.

After faculty members have agreed to serve on the committee, a "Request to Appoint a Thesis Committee" form should be completed and submitted to the Graduate School. The Graduate School then officially appoints the committee and notifies each member. The "Request to Appoint a Thesis Committee" form and other forms can be found on the Graduate School website (http://www.vanderbilt.edu/gradschool/form_locator/).

E. Qualifying Examination Phase I

A student must have completed at least 24 hours of didactic work prior to taking Phase I of the Qualifying Exam. The Phase I Qualifying Examination should be completed in the summer of the second year. The examination will be administered by the student’s Thesis Advisory Committee. The DGS and Program Manager must be notified of the date of the exam. Notification of the exam date and scheduling of a room for the exam should be completed no less than four weeks in advance of the exam.

The purpose of the Phase I Qualifying Examination is twofold:

a) To test the student’s ability to define a basic scientific research question, evaluate relevant literature, and propose critical experiments to address the question;

b) To test the student’s depth and breadth of knowledge of basic cell and molecular pathology.

For this examination, the student is required to develop a novel proposal based on the research she/he plans to undertake in the Thesis Advisor’s laboratory and defend the proposal before the Thesis Advisory Committee. The proposal should follow the Research Plan section of the NIH R01 grant format and be no
more than 10 pages, double-spaced, with no more than 30 lines of text per page and type face with an average spacing of no more than 15 characters per inch. The written proposal should include the hypothesis to be tested, specific aims, sufficient background to provide rationale for the study, experimental approach and design, anticipated outcomes, possible problems, and interpretations of data. The proposal should be submitted to the Thesis Advisory Committee and DGS at least 10 days prior to the date of the exam.

The examination will begin with the student presenting a brief overview of the proposal (15-20 minutes) followed by questions from the committee. It is important that the committee ask questions focused on the proposal to be able to evaluate the student’s ability to define a basic research question and propose experiments to address that question. Equally important, the committee should ask questions to test the student's breadth of knowledge of basic cell and molecular biology and pathology. While the amount of time for examination in each of these areas is not specified, it is important that sufficient questions are asked to determine if the student is prepared to proceed with the dissertation proposal and thesis research.

The examination should last no longer than two hours. During the examination, the thesis advisor may ask questions, but should not assist the student in answering questions. Unsatisfactory performance may require additional coursework or study followed by reexamination. The student is allowed to consult the Thesis Advisory Committee and/or Thesis Advisor for advice on how to address weaknesses identified in the proposal or examination, and how to improve the proposal or performance in the examination. The reexamination may focus on the identified weaknesses or may be comprehensive. A student may be dismissed from the program if performance on the re-examination is not deemed satisfactory by a majority vote of the Thesis Advisory Committee.

F. Qualifying Examination Phase II

For this examination the student must submit to the Committee and to the DGS a dissertation research proposal in the format of an NIH R01 grant proposal. (Use Arial, Helvetica, Palatino Linotype, or Georgia typeface, and a font size of 11 points or larger with 0.5 inch margins, no more than 6 lines/inch, and no more than 15 characters/inch average spacing.) The proposal should include a Specific Aims page and Research Strategy (Significance, Innovation, and Approach) up to a maximum of 13 pages. The Phase II proposal could be an extension or refinement of work proposed in Phase I or could be based on a new research direction as decided by the student and her/his mentor. The student in consultation with the committee will set a date and will notify the DGS who in turn notifies the Associate Dean of the Graduate School. The DGS and Program Manager must be notified four (4) weeks prior to the date of the exam. The written proposal must be submitted to the members of the committee at least 10 days prior to the examination.

The format for the examination includes a 30-45 minute oral presentation by the student followed by a question/answer period. All questions must be related to the proposal. The Thesis Advisor may ask questions and may provide points of clarification if requested; however, the Advisor should not assist the student in answering questions. If the student passes the examination, they are admitted to candidacy for the Ph.D. degree. If the committee feels that certain areas of the proposal are weak or need refocusing, or if clarification concerning the research protocol is needed, the student can be asked to re-write all or part of the proposal and re-schedule another committee meeting. The committee may also specify a time period in which the students must respond to the concerns. If the student does not successfully address the concerns of the committee at the re-examination, the student will be asked to withdraw from the Ph.D. program. With the passing of this examination the student is admitted to candidacy for the Ph.D. degree. By the regulations of the Graduate School the candidate has a maximum of 4 years from the date of passing the qualifying examination to complete the Ph.D. degree. The Phase II Qualifying Examination should be completed preferably in the fall but no later than the spring semester of the third year.

G. Role of Thesis Advisory Committee

It is the responsibility of the Thesis Advisory Committee to assure that the requirements of the department and the Graduate School are met by the candidate for the degree. In addition to reviewing the scientific progress of the student, the committee should be generally concerned with the student’s development
during the program. Students should feel free to seek help from any member of the Thesis Advisory Committee.

The Thesis Advisory Committee should meet with the student and Advisor at least every 6 months to review progress and to assist the student in planning the direction of research. The DGS should be notified of the committee meetings. Prior to these meetings the student will develop a progress report for the period of time since the last meeting. This report should be given to each committee member at least one week prior to the meeting. The Chair of the Thesis Advisory Committee will use the Student Advisory Committee report form (see p. 14) to record the results of each meeting. The report form should be signed by the student after discussion with the committee Chair. In addition, the Chair should provide a letter to the applicant detailing the results of the meeting. Copies of the letter should be sent to each member of the Thesis Advisory Committee. Copies of the report and letter also must be filed with the Program Manager and copies sent to the DGS. This procedure will help maintain open communication between student, thesis advisor, DGS, and the Committee. If a student receives two unsatisfactory reports they must schedule a meeting with the DGS to discuss the situation.

H. Thesis

Thesis Preparation

The Thesis Advisory Committee, in consultation with the student, the thesis advisor, and the DGS, will determine when the student has completed the requirements for the dissertation research and is prepared to write the thesis. It is also important at this time for the student to submit the “Intent to Graduate Form” to the Graduate School, signed by the DGS. Since the publication of original research is felt to be an integral part of graduate education, the student cannot defend the thesis until at least one first-authored manuscript has been accepted for publication by a refereed journal.

Thesis Defense

The Thesis Advisory Committee will examine the student and thesis. If possible, the defense should be scheduled during one of the regular departmental seminars, such as Works in Progress (WIP) or Journal Club (PATH 8331 and 8332). In some instances it might be possible to schedule a defense during Seminars in Pathology. The student should contact the program manager who will arrange to have the student added to the appropriate schedule.

The final examination begins with the student presenting a seminar of approximately 45 minutes in duration. This portion of the examination is open to the public. At the end of the seminar, questions from non-committee members are entertained. After those questions have been addressed, the public is dismissed, and the Thesis Advisory Committee administers the final examination. At the end of the examination, the student is asked to leave the room while the committee discusses the examination and evaluates the student's performance. The student is then informed of the results of the examination. If successful, the members of the examining committee sign the appropriate forms and, if appropriate, the first page of the thesis. It is the prerogative of the committee as to whether they sign the thesis at this time or whether they sign it when final revisions, if any, are made. The form declaring successful completion of the final examination must be signed and sent to the Graduate School.

I. Graduate Student Travel

The Department of Pathology encourages graduate students to participate in regional and national meetings, realizing that this represents an important facet of graduate education. In those situations where other funds are not available for travel, the Graduate Program may provide limited funds. Priority will be given to students who are presenting a paper or a poster, as well as those who have not previously received funding from the Program.
III. Suggested Time Schedule for Graduate Training

<table>
<thead>
<tr>
<th></th>
<th>Year 01</th>
<th>Year 02</th>
<th>Year 03</th>
<th>Year 04-?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>S</td>
<td>S</td>
<td>F</td>
</tr>
<tr>
<td>IGP Core Curriculum</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Rotations</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>† Path 8331 / Seminar Exp. Path.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>† Path 8332 / Current Topics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Path 8351(A) 8352 (B) / Cellular and Molecular Basis of Disease</td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Electives</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Selection of Thesis Advisor</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selection of Thesis Advisory Committee</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualifying Exam Phase I</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Qualifying Exam Phase II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Path 8999 / Non-Candidate Research</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Path 9999 / Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

‡ Students take PATH 8331 & 8332 for credit one time, but they must participate in the courses as long as they are in residence in the program.
DETALS OF CELLULAR AND MOLECULAR PATHOLOGY GRADUATE PROGRAM

Elective Courses 2015-2016

NOTE: Vanderbilt Course Numbering System Subject to Change

PATH 8329 – Lipoprotein Metabolism
Lectures, discussions, and assigned readings in the metabolism of plasma lipoproteins. Topics include the composition and structure of plasma lipoproteins; lipoprotein biosynthesis and assembly; enzyme, exchange proteins, and receptors involved in lipoprotein catabolism; and disorders of lipid metabolism. Presentation of oral reports is required. Prerequisite: an introductory course in biochemistry. Minimum enrollment six students. SPRING. [2] Swift.

PATH 8333 – Fundamental of Scientific Communication
Focuses on development and enhancement of skills in written and oral scientific communication, and critical thinking in scientific problem solving. Lectures, student projects, presentations, and class discussions emphasizing manuscript and research grant proposal writing, poster and oral presentations. SPRING. [3] Bock, Hoover, and Staff.

PATH 8335 – Molecular Pathology of Extracellular Matrix
Lectures on the structure, genes, metabolism, and regulation of the collagens, structural glycoproteins, proteoglycans, and elastin. The role of these macromolecules in maintaining normal tissue integrity and function and in development and wound healing is emphasized, as is the molecular basis for the involvement of these proteins in both inherited and acquired diseases (e.g., atherosclerosis, diabetes, and cancer). Prerequisite: biochemistry and/or cell biology. SPRING. [2] Davidson, Sephel, and Staff.

PATH 8337 – Cellular and Molecular Basis of Vascular Disease
Lectures on contemporary research in cell biology, protein and lipid biochemistry, and molecular biology of the vascular system. Open to graduate and medical students, postdoctoral fellows, and undergraduate students with consent of instructors and the Graduate School. Prerequisite: a suitable background in biochemistry and cell biology. FALL. [3] Bock, Hoover.

PATH 8351(A) – Cellular and Molecular Basis of Disease
An introduction to human disease and the accompanying changes in normal structure and function. The course consists of modules focused on a physiologic system and its related diseases. Each module includes a review of normal anatomy and physiology and the pathological changes occurring with the disease, an in-depth discussion of the molecular and cellular mechanisms of the disease along with clinical correlates, as well as a discussion of high-profile papers relevant to the disease. 8351A-(Spring) and 8352B-(Fall) are offered as a series, but they can be taken in any order. Prerequisite: basic knowledge of biochemistry, cell, and molecular biology. [3-3] McDonald, Stricker and Staff.

PATH 8352(B) – Cellular and Molecular Basis of Disease
An introduction to human disease and the accompanying changes in normal structure and function. The course consists of modules focused on a physiologic system and its related diseases. Each module includes a review of normal anatomy and physiology and the pathological changes occurring with the disease, an in-depth discussion of the molecular and cellular mechanisms of the disease along with clinical correlates, as well as a discussion of high-profile papers relevant to the disease. 8351(A)-(Spring) and 8352(B)-(Fall) are offered as a series, but they can be taken in any order. Prerequisite: basic knowledge of biochemistry, cell, and molecular biology. [3-3] McDonald, Stricker and Staff.