General Access to Chiral N-Alkyl Terminal Aziridines via Organocatalysis

Olugbeminiyi O. Fadeyi, Michael L. Schulte, and Craig W. Lindsley*

Departments of Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232

craig.lindsley@vanderbilt.edu

Received June 3, 2010

ABSTRACT

A three-step, one-pot protocol involving enantioselective α-chlorination of aldehydes, subsequent reductive amination with a primary amine, and S_N2 displacement to afford chiral N-alkyl terminal aziridines in 40–65% yield (74–87%/step) and, in most cases, >90% ee is reported.

Aziridines represent an important class of nitrogen heterocycles with a wide range of synthetic utility and prevalence in natural products.1 Despite their value, synthetic routes to aziridines are limited in terms of generality and diversity of the N-substituent. Classical methods for the synthesis of terminal aziridines include nitrene transfer to olefins,2 carbene methodology,3 aza-Darzens approaches,4 addition/elimination sequences,5 and ylide-mediated strategies.6 For many of these tactics, the N-substituent is typically a p-toluenesulfonyl moiety or other electron-withdrawing group.1,2 The synthesis of chiral terminal aziridines with diversity at the N-substituent is extremely rare.1 One recent example was reported for the synthesis of terminal diarylaziridines by the enantioselective reductive amination of α-chloroketones.7 Here, we report a general one-pot protocol for the enantioselective synthesis of N-alkyl terminal aziridines via organocatalysis.

We recently reported on a one-pot protocol for the enantioselective α-fluorination of aldehydes, followed by reductive amination to produce pharmaceutically relevant chiral β-fluoroamines (Figure 1, eq 1).8,9 Previously, both MacMillan11 and Jørgensen12 disclosed the enantioselective α-chlorination of aldehydes via organocatalysis. Based on this precedent and our chiral β-fluoroamine work, we envisioned a three-step, one-pot protocol involving enantioselective α-chlorination of aldehydes, subsequent reductive amination with a primary amine, and S_N2 displacement to afford chiral N-alkyl terminal aziridines in 40–65% yield (74–87%/step) and, in most cases, >90% ee.

Figure 1. Organocatalytic approach to chiral β-fluoroamines and envisioned route to chiral N-alkyl terminal aziridines.

(1) For a recent review on the asymmetric synthesis of aziridines, see: Pellissier, H. Tetrahedron 2010, 66, 1509.
oselective α-chlorination of aldehydes, subsequent reductive amination with a primary amine, and S_{\text{N}}2 displacement to afford previously unattainable chiral terminal aziridines with a wide range of N-substituents (Figure 1, eq 2). Overall, this new approach represents the effective addition of a primary amine across an olefin to form aziridines and is a notable extension of the Linchpin SOMO catalysis concept to access chiral epoxides reported by MacMillan.\(^\text{10}\)

For a one-pot protocol involving a reductive amination step, we could not use the MacMillan α-chlorination chemistry, as that route employed a chloroquinone as the chlorinating agent and acetone as a solvent.\(^\text{11}\) The Jørgensen route was attractive, as NCS was the chlorinating agent, and the optimized solvent was DCE.\(^\text{12}\) We first set out to determine if this proposal would allow access to racemic N-alkyl terminal aziridines. Thus, DL-proline-catalyzed α-chlorination of 1 with NCS was followed by reductive amination with benzylamine and subsequent base-induced S_{\text{N}}2 cyclization with KOH in THF/H\(_2\)O at 65 °C, did provide racemic aziridine 3 in 70% yield (Scheme 1) for the three step, one-pot protocol (average of 90% per step). Importantly, KOH was critical for the production of 3, as a screen of organic (ie., Et\(_3\)N, pyridine, DBU, KO-t-Bu) and inorganic bases (ie., NaH, K\(_2\)CO\(_3\)) provided less than 50% conversion to 3.\(^\text{13}\)

Efforts now focused on developing an enantioselective one-pot protocol. To ensure we had optimal conditions for the enantioselective α-chlorination of 1, we elected to survey a set of 15 organocatalysts 5a–o employing NCS as the chlorinating agent and DCM as the solvent. This study demonstrated that the Jørgensen\(^\text{11}\) catalyst 5m was indeed optimal, affording 4 in >97% conversion. In order to determine the degree of enantioselectivity by chiral HPLC, 4 was reduced to the corresponding β-chloroalcohol 6 and found to possess 95% ee (Scheme 2). Organocatalysts 5k, 5l, 5n, and 5o never before employed for this transformation afforded comparable conversion (>95%), but lower enantioselectivity (56–90% ee). With optimal α-chlorination conditions in hand, we attempted the three step, one-pot protocol to deliver 3 enantioselectively. Utilizing the protocol in Scheme 1, but replacing DL-proline with 5m, we were disappointed to find that this approach afforded 3 in comparable yield, but in less than 40% ee. Thus, we investigated the most probable source of epimerization in the sequence: the room-temperature reductive amination step. Molecular sieves proved essential, and we found a direct correlation between enantioselectivity and temperature. As shown in Scheme 3, reducing the temperature for the reductive amination step to −78 °C resulted in the enantioselective synthesis of aziridine 3 in 71% yield for the three steps (>90% per step) and 94% ee. As expected, the (S,S)-5m catalyst afforded the opposite enantiomer of 3 in good yield (74%) and excellent enantioselectivity (95% ee).

afforded comparable conversion (>95%), but lower enantioselectivity (56–90% ee).

With optimal α-chlorination conditions in hand, we attempted the three step, one-pot protocol to deliver 3 enantioselectively. Utilizing the protocol in Scheme 1, but replacing DL-proline with 5m, we were disappointed to find that this approach afforded 3 in comparable yield, but in less than 40% ee. Thus, we investigated the most probable source of epimerization in the sequence: the room-temperature reductive amination step. Molecular sieves proved essential, and we found a direct correlation between enantioselectivity and temperature. As shown in Scheme 3, reducing the temperature for the reductive amination step to −78 °C resulted in the enantioselective synthesis of aziridine 3 in 71% yield for the three steps (>90% per step) and 94% ee. As expected, the (S,S)-5m catalyst afforded the opposite enantiomer of 3 in good yield (74%) and excellent enantioselectivity (95% ee).

As shown in Scheme 4, the reaction scope is general with respect to both aldehyde and amine, providing chiral terminal

Scheme 1. One-Pot Protocol for Racemic N-Alkyl Terminal Aziridines

\[
\begin{align*}
1. & \quad 10 \text{ mol } \% \text{ DL-proline} \\
2. & \quad \text{CH}_2\text{Cl}_2, \text{rt} \\
3. & \quad 2 \text{ (1.3 equiv)} \\
4. & \quad \text{BrNH}_2, \text{NaB(OAc)}_2 \text{H} \\
5. & \quad \text{KOH, THF/H}_2\text{O (1:1)} \\
6. & \quad 65 ^\circ \text{C, 24 h} \\
\end{align*}
\]

\(\text{70% yield} \quad (+)\text{-}3\)

(13) See the Supporting Information for full details.
N-alkyl aziridines 4–17 in overall yields of 40–65% (74–87% per step) and, in most cases, >90% ee for the three step, one-pot protocol. Determining the enantioselectivity required classical reversed-phase chiral HPLC, SFC, or NMR chiral shift reagents.13

Finally, modest improvements in yield and comparable enantioselectivity were observed if we performed a workup after the α-chlorination step. The addition of pentane to the crude reaction mixture precipitated both the succinimide and organocatalyst 5m. Removal of the pentane, concentration, resuspension in CH₂Cl₂, and proceeding with the reductive amination and base-induced cyclization steps now provided N-alkyl terminal aziridines in 51–75% yield and >90% ee (Scheme 5); however, isolation proved more facile.

In summary, we have developed a three step, one-pot protocol for the general enantioselective synthesis of terminal N-alkyl aziridines via organocatalysis. This new methodology provides access to aziridines that were previously difficult to prepare, utilizing aldehydes and amines for which thousands are commercially available.

Acknowledgment. We acknowledge the Department of Pharmacology for support of this research and Mr. Christopher J. Denicola (Vanderbilt Program in Drug Discovery) for technical assistance with chiral HPLC and chiral SFC. M.L.S. acknowledges the Vanderbilt Institute of Chemical Biology (VICB) for a predoctoral fellowship.

Supporting Information Available: Complete experimental procedures, compound characterization, chiral HPLC/SFC analysis, and supplemental tables. This material is free of charge via the Internet at http://pubs.acs.org.

OL101276X