Surgical Outcomes in Intermittent Exotropia

Jeffrey D. Colburn, M.D., PGY-3
Preceptor: David Morrison, M.D.
Vanderbilt Eye Institute
May 30th, 2008
Intermittent Exotropia

- Intermittent exotropia x(t) is a latent tendency (phoria) for the eyes to turn out, which is intermittently controlled by fusional convergence.
- Characteristics
 - Typically good bifoveal fusion and stereoacuity when aligned.
 - Amblyopia is rare in x(t).
 - X(t) Tends to remain stable or progress.
 - Progression might result in dense suppression.
Intermittent Exotropia

• **X(t) Sub-types**
 1. **Basic**
 • Angle is equal at near & distance
 2. **Pseudo-divergence excess (PDE)**
 • Angle is equal at near & distance but appears larger in distance because of masking
 3. **True divergence excess (TDE)**
 • Angle is larger in distance
 4. **Convergence insufficiency (CI)**
 • Angle is larger at near
Surgical Treatment

• Goals
 – Improve alignment & control
 – Improve binocular vision

• Basic concepts
 – Recession (weakening procedure)
 – Resection (strengthening procedure)

• Two primary approaches
 – Bilateral lateral rectus recession (BLRc)
 – Unilateral recess & resect (R&R)
Predictors of Outcomes

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Significant predictive factors</th>
<th>Insignificant factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pratt-Johnson & Tillson</td>
<td>1977</td>
<td>surgery before age 4</td>
<td>post-op overcorrection</td>
</tr>
<tr>
<td>Scott, et al</td>
<td>1981</td>
<td>moderate overcorrection at POW#1 visit</td>
<td></td>
</tr>
<tr>
<td>Richard & Parks</td>
<td>1983</td>
<td></td>
<td>age sub-type</td>
</tr>
<tr>
<td>Kushner, et al.</td>
<td>1993</td>
<td>pre-op deviation</td>
<td></td>
</tr>
<tr>
<td>Kushner</td>
<td>1998</td>
<td>procedure type</td>
<td>central fusion or stereopsis age pre-op deviation</td>
</tr>
<tr>
<td>Yildirim</td>
<td>1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee & Lee</td>
<td>2000</td>
<td>overcorrection on POD#1</td>
<td>procedure type age pre-op deviation</td>
</tr>
<tr>
<td>Somer, et al.</td>
<td>2004</td>
<td>asymmetric accommodation</td>
<td>procedure type pre-op deviation</td>
</tr>
<tr>
<td>Franzco, et al.</td>
<td>2005</td>
<td>R&R sub-type</td>
<td>R&R pre-op control age</td>
</tr>
</tbody>
</table>
Observations

- Effect of pre-operative angle size on surgical outcomes in x(t) patients.

- Disparate opinions on the more successful procedure for x(t).
Hypotheses

1. Larger angle $x(t)$ patients have more successful surgical outcomes than smaller angle $x(t)$ patients.

2. R&R procedures have more successful surgical outcomes than BLRc in the management of $x(t)$.
Methods

• Retrospective chart review
 – Inclusion criteria
 • X(t) surgical cases
 • January, 2003 through January, 2008
 • Age \leq 18 years
Methods

• **Exclusion criteria**
 – Developmental delay
 – Vertical deviation
 – Pattern deviation
 – Prior surgery
 – Partially or untreated amblyopia
 – Monocular exotropia
 – Constant exotropia
 – Secondary exotropia
 – Nystagmus
Data collection

- Variables considered
 - Gender
 - Age at time of surgery
 - X(t) sub-type
 - Pre-op deviation
 - Stereo-acuity
 - Presence of fusion
 - Presence of suppression
 - Procedure type
 - Deviation post-op visit #1
 - Deviation post-op visit #2
Outcome Measures

• Surgical success:
 – Intermittent exotropia ≤ 8 PD
 – No esotropia

• Surgical failure:
 – Not meeting above success criteria
 – Repeat surgery for poor control

• Time to surgical failure

• Over-correction or under-correction
Demographics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Percent or Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number</td>
<td>82</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>38, 46.3%</td>
</tr>
<tr>
<td>Female</td>
<td>44, 53.7%</td>
</tr>
<tr>
<td>Mean age at surgery (mos)</td>
<td>69.1, 17-172</td>
</tr>
<tr>
<td>Subtypes</td>
<td></td>
</tr>
<tr>
<td>Basic</td>
<td>46, 56.1%</td>
</tr>
<tr>
<td>PDE</td>
<td>33, 40.2%</td>
</tr>
<tr>
<td>CI</td>
<td>2, 2.4%</td>
</tr>
<tr>
<td>TDE</td>
<td>1, 1.2%</td>
</tr>
<tr>
<td>Average pre-op deviation (PD)</td>
<td>26.4, 16-45</td>
</tr>
<tr>
<td>History of amblyopia</td>
<td>8, 9.8%</td>
</tr>
<tr>
<td>Mean follow-up (mos)</td>
<td>17.3, 1-43</td>
</tr>
</tbody>
</table>
Results

• Overall outcomes
 – 61 BLRc, 19 R&R, 2 unilateral LRc
 – 42 (51.2%) patients failed
 – Mean time to failure was 6.9 months (1-34)
 – 35 patients (43%) were under corrected
 – 6 patients (7.3%) were over corrected
Results

Pre-operative deviation

Two sample t-test

Mean deviation in success group = 26.2
Mean deviation in failure group = 26.6
p = 0.786
Results

Procedure type
Chi-squared test

\[p = 0.608 \]
Results

Other variables

Multivariate logistic regression

<table>
<thead>
<tr>
<th>Factor</th>
<th>Chi-square</th>
<th>d.f.</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.96</td>
<td>1</td>
<td>0.33</td>
</tr>
<tr>
<td>Sub type (basic vs. pde)</td>
<td>0.40</td>
<td>1</td>
<td>0.53</td>
</tr>
<tr>
<td>Pre-operative deviation</td>
<td>0.69</td>
<td>1</td>
<td>0.41</td>
</tr>
<tr>
<td>Stereo acuity</td>
<td>3.27</td>
<td>3</td>
<td>0.35</td>
</tr>
<tr>
<td>Presence of fusion</td>
<td>2.15</td>
<td>1</td>
<td>0.14</td>
</tr>
<tr>
<td>Presence of suppression</td>
<td>0.62</td>
<td>1</td>
<td>0.43</td>
</tr>
<tr>
<td>Surgical procedure (blrc vs. r&r)</td>
<td>2.37</td>
<td>1</td>
<td>0.12</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6.97</td>
<td>9</td>
<td>0.64</td>
</tr>
</tbody>
</table>
Results

Kaplan-Meier Survival Estimate with 95% CI
Results

Survival curves by $x(t)$ sub-type

Survival curves by procedure type

P = 0.80

P = 0.96
Results

Multivariate survival analysis
Cox proportional hazards model

<table>
<thead>
<tr>
<th>Variables</th>
<th>coef</th>
<th>exp(coef)</th>
<th>p</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-operative Deviation</td>
<td>-0.0538</td>
<td>0.9480</td>
<td>0.1300</td>
<td>0.884, 1.016</td>
</tr>
<tr>
<td>Age</td>
<td>-0.0149</td>
<td>0.9850</td>
<td>0.0140</td>
<td>0.9735, 0.997</td>
</tr>
<tr>
<td>Gender (male)</td>
<td>-0.0489</td>
<td>0.9520</td>
<td>0.9000</td>
<td>0.4435, 2.045</td>
</tr>
<tr>
<td>Presence of Fusion</td>
<td>-1.5830</td>
<td>0.2050</td>
<td>0.0760</td>
<td>0.0358, 1.178</td>
</tr>
<tr>
<td>Presence of Suppression</td>
<td>-0.4880</td>
<td>0.6140</td>
<td>0.5600</td>
<td>0.1198, 3.144</td>
</tr>
<tr>
<td>Stereo Acuity (vs. 40-100 arc sec)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140-800 arc sec</td>
<td>1.1500</td>
<td>3.1590</td>
<td>0.0430</td>
<td>1.0377, 9.617</td>
</tr>
<tr>
<td>3600 arc sec</td>
<td>0.4100</td>
<td>1.5080</td>
<td>0.5100</td>
<td>0.4392, 5.179</td>
</tr>
<tr>
<td>None</td>
<td>0.6780</td>
<td>1.9700</td>
<td>0.3700</td>
<td>0.4516, 8.597</td>
</tr>
<tr>
<td>Surgical procedure</td>
<td>-0.8170</td>
<td>0.4420</td>
<td>0.2200</td>
<td>0.1186, 1.644</td>
</tr>
</tbody>
</table>
Results

Fisher’s exact test, $p = 0.00006$
Results

Fisher’s exact test, \(p = <0.00001 \)
Comment

• Weaknesses of study
 – Retrospective in nature
 – Small sample size
 – Early drop out of successful cases

• Future Directions
 – Prospective study
Summary

• Power limited by sample size

• No statistical significance found for:
 – Degree of post-operative deviation
 – Procedure type

• The following were found to have statistical significance:
 – Age at time of surgery
 – High level of stereo-acuity
 – Ocular alignment at first & second post-operative visits
Acknowledgements

• David Morrison, M.D.
• Sean Donahue, M.D., Ph.D.
• Chun Li, Ph.D.
• Pengchung Lu, M.S.
• Vickie Hailey & Jean Pippen
Comments or Questions?