Effect of aprotinin on clinical outcomes in coronary artery bypass graft surgery: A systematic review and meta-analysis of randomized clinical trials

Artyom Sedrakyan, MD, PhDa,b,d
Tom Treasure, MD, FRCSb,c
John A. Elefteriades, MD, FACSa

Objective: Despite proven blood transfusion benefits, aprotinin may be underused in coronary artery bypass grafting. Reluctance to use aprotinin may stem from safety concerns. The current objective was to evaluate clinical outcomes (mortality, myocardial infarction, renal failure, stroke, atrial fibrillation) in patients undergoing coronary artery bypass grafting who receive aprotinin by performing a quantitative overview of published, randomized, controlled trials.

Methods: MEDLINE, EMBASE, and PHARMLINE (1988-2001) and reference lists of relevant articles were searched for coronary artery bypass grafting studies. Criteria for data inclusion were as follows: (1) random allocation of study treatments, (2) placebo control, (3) enrollment only of patients undergoing coronary artery bypass grafting, (4) no combination with another experimental medication or device, and (5) prophylactic and continuous intraoperative use.

Results: Data from 35 coronary artery bypass grafting trials (n = 3879) confirm that aprotinin reduces transfusion requirements (relative risk 0.61, 95% confidence interval 0.58-0.66) relative to placebo, with a 39% risk reduction. Aprotinin therapy was not associated with increased or decreased mortality (relative risk 0.96, 95% confidence interval 0.65-1.40), myocardial infarction (relative risk 0.85, 95% confidence interval 0.63-1.14), or renal failure (relative risk 1.01, 95% confidence interval 0.55-1.83) risk, but it was associated with a reduced risk of stroke (relative risk 0.53, 95% confidence interval 0.31-0.90) and a trend toward reduced atrial fibrillation (relative risk 0.90, 95% confidence interval 0.78-1.03).

Conclusions: Aprotinin reduces transfusion requirements. Concerns that aprotinin therapy is associated with increased mortality, myocardial infarction, or renal failure risk is not supported by data from published, randomized, placebo-controlled clinical trials. Evidence for a reduced risk of stroke and a tendency toward reduction of atrial fibrillation occurrence was observed in patients who received aprotinin.

Aprotinin (Trasylol) is the only pharmacologic treatment approved by the US Food and Drug Administration to reduce blood transfusion in coronary artery bypass grafting (CABG). The use of aprotinin in CABG has been associated with more than 45% reduction in blood transfusion relative to placebo in many large multicenter trials.1,2 Growing literature relating blood transfusion to adverse outcomes and associated costs heightens the need to use strategies to reduce transfusion.

A reluctance by surgeons to use aprotinin routinely may result from concerns about the risk of a possible procoagulable state, including such adverse outcomes as myocardial infarction (MI), stroke, and atrial fibrillation, induced by an agent that reduces blood loss. Although some side effects (MI and renal failure) have been
reported in the literature, evidence supporting these associations is limited and primarily based on case series. A recent prospective, uncontrolled, observational study reported that therapy with antifibrinolytic agents including aprotinin was associated with increased mortality, whereas a previous literature review analysis showed aprotinin use to be associated with decreased mortality. The latter study addressed safety and efficacy of aprotinin use in cardiac surgery by analyzing a mixture of cardiac surgical procedures; the study, however, did not address important clinical end points reported in more recent studies, such as stroke and atrial fibrillation. In addition, numeric discrepancies in the evaluation led to the criticism that a more rigorous analysis was required.

This investigation analyzed the association of aprotinin with mortality, myocardial infarction, renal failure, stroke, and atrial fibrillation by performing a rigorous quantitative overview of all randomized, controlled trials of aprotinin in CABG. As a secondary end point, the relationship of aprotinin administration to the reduced risk of blood transfusion was calculated. The impact of preoperative aspirin use on these clinical outcomes was also evaluated.

Methods

Selection of Trials

Only trials enrolling patients undergoing CABG were included, because that is the only indication approved by the US Food and Drug Administration for aprotinin use in cardiac surgery. Randomized clinical trials of aprotinin use in CABG were identified by searching the MEDLINE, EMBASE, and PHARMLINE databases (1988-2001 through MEDLINE) with the key words aprotinin or trasylo l in combination with coronary-artery-bypass*:Me, coronary and bypass, myocardial revascularization, aortocoronary and bypass, aortocoronary and shunt, aortocoronary and anastomosis, coronary and graft, and coronary and surgery. A standard filter designed by the Cochrane Collaboration for identifying randomized clinical trials was used for MEDLINE and EMBASE (adopted from Scottish Intercollegiate Guideline Network [http://www.sign.ac.uk/methodology/filters.html]). In addition, reference lists of published trials of aprotinin were searched for additional studies. The initial widest search produced 112 English-language and 3 non–English language articles. Then criteria for study inclusion in the overview were applied, which were as follows: (1) random allocation of study treatments, (2) placebo control, (3) enrollment of only patients undergoing CABG, (4) no combination with another experimental medication or device, and (5) preoperative and continuous intraoperative use (studies with only pump prime use or only postoperative use of aprotinin were excluded). After initial screening of abstracts, 72 studies appeared to conform to the inclusion criteria. After evaluating full reports of all 72 studies, 9 studies were excluded because of only pump prime use of aprotinin (aprotinin used as a single bolus in the cardiopulmonary pump with no continuous infusion; see Appendix Figure 1, I-9, available online). Another 8 studies were excluded because of enrollment of both patients undergoing CABG and those undergoing valve operation (see Appendix Figure 1, 10-17, available online). Thorough analysis of the remaining reports found 2 studies in which patients were not randomly assigned to placebo and active treatment groups (see Appendix Figure 1, 18,19, available online), another study that was a subgroup analysis (see Appendix Figure 1, 20, available online), and another study in which recombinant aprotinin was used (see Appendix Figure 1, 21, available online). Fifty-one studies remained. Contact with all 51 corresponding authors was attempted by e-mail or facsimile transmission to clarify and gain additional data not published in the report. Current contact information of corresponding authors was gleaned from recent publications cited in MEDLINE and the World Wide Web. Data were used only from articles that reported adverse event information of interest, and those adequately supplemented by personal communication with the primary investigator; therefore a final 16 studies were not included (see Appendix Figure 1, 22-37, available online). The remaining 35 trials (45 published articles) reported information on any outcomes of interest (mortality, MI, renal failure, stroke, and atrial fibrillation) and met predefined criteria to be selected for the overview (see Appendix Figure 1, 38-82, available online).

Data Collection

For each trial, abstracted data included the frequencies of the events in the aprotinin (full-dose, low-dose, or other) and placebo groups, as well as the numbers of patients randomly allocated to the treatment groups. Information on methodologic quality of the included studies, such as method of randomization, blinding and its methodology, group comparability, and information on similar treatment and follow-up after randomization was also collected. Additional abstracted data included surgical history of the patients (primary CABG trials versus mixed [including both primary and reoperative CABG] trials or only reoperative CABG trials), preoperative (within 7 days) aspirin use, mean age, gender, race, left ventricular ejection fraction, and the publication date. One of the authors (A.S.) abstracted the data, and another author (J.A.E.) participated in adjudication of any discrepancies.

Mortality reported in all trials included only in-hospital deaths. The criterion for defining MI was “definite MI” report according to Minnesota coding classification, or in the absence of such coding information, the reports of “new Q-wave MI.” The criterion for defining renal failure was the report of this event as clinical diagnosis. Most of the trials that reported renal failure did not report assessment method. However, trials funded by a pharmaceutical company reported a definition of renal failure as any of the following diagnoses: “anuria,” “kidney failure,” “acute kidney failure,” “kidney tubular necrosis,” and “uremia.” The criteria for the evaluation of stroke frequency were clinical diagnosis of “stroke” and “severe neurologic deficit.” In addition, such diagnoses as “cerebrovascular accident,” “cerebral embolism,” “cerebral hemorrhage,” “cerebral infarct,” and “cerebral ischemia” were considered. The definition of atrial fibrillation was based on clinical diagnosis of that event.

Although the methods of ascertainment of the events were not standardized among the trials, within each trial they were applied equally to the treatment groups. Reports and descriptions such as “no major complications were observed in the study” were not considered to represent 0 events. Only explicit description of the absence of any outcome event was considered as 0 events.
Quality of the Studies
Methodologic quality of included studies was evaluated according to Jadad and coworkers’ criteria,12 which are based on following:
1. “Randomized” study description
2. Description of correct randomization procedure
3. “Double-blinding” study description
4. Description of correct double-blinding
5. Dropouts and adequate description of the end points of interest

Statistical Analysis
The risk estimates for mortality, MI, renal failure, stroke, and atrial fibrillation in the aprotinin and placebo groups were assessed separately. Information from the trials was combined with the general inverse variance-based method,13 which incorporates a fixed-effect model and assumes that studies under examination share a common true effect size, that the sampling distribution of these effects is normal, and that all the variability is due to sampling error (homogeneity assumption). In this model, the weights of individual studies correspond to the inverse of the total variance for each study. Numbers-needed-to-treat and their confidence intervals (CIs) were also calculated using risk difference (RD) analysis. RD statistics were particularly important in the trials with 0 events, in which relative risk (RR) was not estimable. In these instances RD statistics still provided an estimate of uncertainty around 0. On the basis of number-needed-to-treat statistics, number of events averted or induced were calculated per 1000 patients undergoing CABG.

The assumption of homogeneity was tested with the \(\chi^2 \) statistic, formed by summing the weighted difference between each individual estimate and the pooled estimate. This assumption was rejected in only instance of blood transfusion analysis. To account for this, a random effect model was applied to estimate the variance component associated with between-study variation.14 According to this method, the variance for each individual study in the overview is the sum of within- and between-study components of the variance. However, the estimate from this model was not different from a fixed-effect model; thus rejection of homogeneity did not influence the results of the blood transfusion analysis. Only fixed-effect model results are reported in this article.

Sensitivity analyses were performed to evaluate the importance of methodologic quality. This factor was not found to have substantial influence on the results. RevMan 4.1 (Cochrane Collaboration, http://www.cc-ims.net/RevMan) was used for all statistical analyses.

Results
A total of 35 trials were included in the overview, involving more than 3887 patients (see Appendix Table 1, available online). Most of the studies were double-blind. Age (mean 60.9 years) was reported in 32 randomized trials. Gender was reported in 28 trials, and on average only 16% of study participants were female. Patient race was reported in only 3 randomized trials. In 3 other trials, patient race was determinable from the study country of origin.15-17 Reoperative CABG was performed in 13.7% of participants as reported in 29 trials.

Full-dose aprotinin was used in 29 trials, whereas low-dose or some other dose was used in 12 trials. Both full-dose and low-dose or other dose aprotinin were used in 6 trials. Aspirin use within a 7-day preoperative period was reported in 27 trials. In 14 of these trials, patients receiving aspirin within the 7-day preoperative period were excluded by the investigators, whereas in the other 13 trials, patients were not excluded on the basis of this criterion.

Mortality
Mortality was assessed in 32 randomized trials including 3779 patients (Figure 1; Appendix Table 2, available online). The overall occurrences of death were similar in combined (full-dose, low-dose) aprotinin (2.47%) and placebo (2.40%) groups, and no significant increased risk of mortality was associated with use of aprotinin (RR 0.96, 95% CI 0.65-1.40).
95% CI 0.65-1.40). RD statistics showed a 0 mortality difference between the groups per 1000 patients undergoing CABG (95% CI −10 to 10).

MI

 MI was assessed in 28 trials including 3555 patients (Figure 1; Appendix Table 2, available online). The occurrence of MI was moderately high in both aprotinin (4.74%) and placebo (5.03%) groups. A tendency toward reduction of the risk of MI in the aprotinin group was relative to placebo (RR 0.85, 95% CI 0.63-1.14); however, it did not reach statistical significance at the 5% level. RD statistics calculated for 1000 patients determined a similar tendency (RD −10, 95% CI −20 to 10). Sensitivity analyses with exclusion of an early study of aprotinin in which increased risk was questionable and not confirmed in personal communication showed no substantial influence on the estimate of RR (range 0.79-0.87).

Renal Failure

Renal failure data were available in 17 trials including 3003 patients (Figure 1; Appendix Table 2, available online). Renal failure incidence also did not vary by study group (aprotinin 1.48%, placebo 1.28%). Meta-analytic estimate for renal failure also did not show increased risk associated with aprotinin therapy (RR 1.01, 95% CI 0.55-1.83). Similarly, RD statistics showed 0 events averted or induced per 1000 patients undergoing CABG when aprotinin was compared with placebo (95% CI −10 to 10).

Stroke

 Stroke was reported in 18 trials and evaluated in 2976 patients (Figure 1; Appendix Table 2, available online). Aprotinin use was associated with consistently fewer strokes in most of the individual trials. Stroke occurred in 1.10% of aprotinin and 2.22% of placebo groups. Aprotinin use was associated with a 47% RR reduction (RR 0.53, 95% CI 0.31-0.90) relative to placebo. The exclusion of a trial in which the quality of diagnosis of cerebrovascular accident was questionable and not confirmed in personal communication had little influence on the magnitude of the association (RR 0.49). RD statistics showed a 10-event reduction per 1000 patients undergoing CABG treated with aprotinin (95% CI −20, 0) relative to placebo.

Atrial Fibrillation

Only 11 studies (Figure 1; Appendix Table 2, available online) involving 2460 patients reported information on atrial fibrillation. The occurrences of atrial fibrillation reported in individual trials were substantial in both aprotinin (22.72%) and placebo (25.00%) groups. A tendency toward risk reduction associated with aprotinin use was observed (RR 0.90, 95% CI 0.78-1.04). RD statistics also showed a tendency toward a more than 30 event reduction (per 1000 CABGs) associated with the use of aprotinin (95% CI −60 to 10).

Blood Transfusion

The number of patients who required any blood transfusion was evaluated in 25 trials involving 3430 patients (Figure 1; Appendix Table 2, available online). The use of aprotinin was consistently associated with fewer patients requiring any blood transfusion. Total numbers of patients requiring any blood transfusion were 40.33% in aprotinin and 63.34% in placebo groups. Accordingly, a 39% risk reduction of blood transfusion was associated with use of aprotinin (RR 0.61, 95% CI 0.58-0.66). RD statistics determined that RR of this magnitude corresponded to more than 250 patients prevented from receiving any blood transfusion per 1000 CABG procedures (95% CI −280 to −220).

Events by Subgroups of Preoperative Aspirin Use

Subgroup analyses stratified by aspirin use were evaluated in fewer trials (Figure 2). In addition, sufficient numbers of events were available regarding only three outcomes (mortality, MI, and blood transfusion). Presence or absence of aspirin use had no impact on mortality as related to aprotinin therapy. The stratified analysis shows that in trials where aspirin users within 5 to 7 days before surgery were excluded, aprotinin use was associated with statistically significant risk reduction in the occurrence of MI (RR 0.40, 95% CI 0.17-0.92). In trials where aspirin users were not excluded, no difference between aprotinin and placebo groups was observed regarding the occurrence of MI (RR 1.00, 95% CI 0.71-1.40). In addition, fewer patients required blood transfusion in trials where aspirin users were excluded (RR 0.53, 95% CI 0.47-0.60) than in trials where aspirin users were not excluded (RR 0.67, 95% CI 0.61-0.72).

Discussion

Our quantitative systematic overview of clinical endpoints indicates that aprotinin therapy is not associated with increased risks of mortality, MI, or renal failure. In contrast, a tendency toward a reduction of MI was observed among patients treated with aprotinin relative to placebo. Moreover, use of aprotinin was associated with a 47% reduction in stroke and tended to be associated with a reduced risk of atrial fibrillation. Aprotinin therapy was also associated with a 39% reduction in the number of patients requiring blood transfusion.

Concerns about MI (graft closure) and renal failure may contribute to relative underuse of this medication in CABG. The contention that aprotinin might be associated with MI and renal failure originated when Cosgrove and colleagues reported overall 14 MI events among 113 patients treated...
with aprotinin versus 4 among 56 treated with placebo. Although substantial increase in creatinine was also reported in aprotinin-treated patients, occurrence of renal failure itself was not different between the groups (8 of 133 vs 4 of 56 in the clinical study report). Although a similar trend was reported in another well-known clinical trial, evidence linking aprotinin to these side events was limited. Further studies on coagulation monitoring have shown that aprotinin increases the activated clotting time in the Celite-based measurement, which could potentially lead to underheparinization and contribute to the observed findings in studies conducted earlier. Although increased or decreased risks of MI and renal failure cannot be definitely excluded (because of wide confidence intervals), our findings should alleviate concerns that aprotinin causes increases in the occurrence of these adverse events.

One previous study attempting to address systematically the issue of mortality and MI found aprotinin to be associated with reduced mortality and slightly higher risk of MI. Although substantial increase in creatinine was also reported in aprotinin-treated patients, occurrence of renal failure itself was not different between the groups (8 of 133 vs 4 of 56 in the clinical study report). Although a similar trend was reported in another well-known clinical trial, evidence linking aprotinin to these side events was limited. Further studies on coagulation monitoring have shown that aprotinin increases the activated clotting time in the Celite-based measurement, which could potentially lead to underheparinization and contribute to the observed findings in studies conducted earlier. Although increased or decreased risks of MI and renal failure cannot be definitely excluded (because of wide confidence intervals), our findings should alleviate concerns that aprotinin causes increases in the occurrence of these adverse events.

One previous study attempting to address systematically the issue of mortality and MI found aprotinin to be associated with reduced mortality and slightly higher risk of MI. However, the analysis included a mixture of cardiac surgical procedures (mitral valve, aortic valve, coronary bypass, etc). In addition, others have indicated concerns about in-accuracies in patient numbers, discrepancies in odds ratios extracted from individual studies, and inappropriate application of inclusion criteria, casting doubt on conclusions drawn from this previous systematic analysis. A recent report suggested that antifibrinolytic therapy, including aprotinin, increased mortality among patients undergoing CABG. The study used data from studies in which treatment group assignment was not described as randomized or controlled; thus treatment bias or use of antifibrinolytics as rescue therapy, instead of as prophylaxis for bleeding, could well explain the data in this observational study. In our analysis of aprotinin therapy, no decrease or increase in mortality was confirmed; the data showed aprotinin therapy to be associated with a mortality risk ratio of 0.96 (95% CI 0.65, 1.40). In addition, no tendency toward an increased occurrence of MI in aprotinin treated patients was shown, and in fact the opposite tendency was observed.

To our knowledge, this is the first systematic analysis study to report that substantial stroke reduction benefits could theoretically be associated with aprotinin use, supporting an observation originally published by Levy et al. The current analysis indicates that approximately 10 cerebrovascular accidents can be averted per 1000 patients undergoing CABG when aprotinin is used. A number of theories describing the effect of aprotinin on risk of stroke have been discussed. As early as 1994, Murkin and associ-
As reported by Sedrakyan, Treasure, and Elefteriades, the use of aprotinin in cardiac surgery may have cerebroprotective effects. Aprotinin is known to reduce blood transfusion requirements, but it may also reduce the risk of stroke. Aprotinin therapy has been associated with a higher reduction in atrial fibrillation compared to low-dose aprotinin (RR 0.65, 95% CI 0.59-0.72). In a retrospective analysis of a cardiac surgery population, a significant decrease in the occurrence of stroke among patients administered full-dose aprotinin relative to the placebo group was observed. This reduction in stroke incidence was observed in patients undergoing CABG. The concern that aprotinin therapy is associated with increased risk of mortality, MI, or renal failure is not supported by data from published, randomized, placebo-controlled clinical trials. For stroke, evidence of a reduced risk associated with aprotinin therapy was shown. A tendency toward reduction in atrial fibrillation occurrence associated with aprotinin use was observed. The balance of effects is positive with aprotinin use.

Conclusions

Aprotinin substantially decreases transfusion requirements in patients undergoing CABG. The concern that aprotinin therapy is associated with increased risk of mortality, MI, or renal failure is not supported by data from published, randomized, placebo-controlled clinical trials. For stroke, evidence of a reduced risk associated with aprotinin therapy was shown. A tendency toward reduction in atrial fibrillation occurrence associated with aprotinin use was observed. The balance of effects is positive with aprotinin use.

We thank all the authors of articles detailing prospective, randomized, clinical evaluations of aprotinin use in coronary artery bypass grafting. We acknowledge Jennifer Maurer, PhD, for her excellent editorial work.

References

15. Hayashida N, Isohara T, Sato T, Maruyama H, Kosuga K, Aoyagi S.
Effects of minimal-dose aprotinin on coronary artery bypass grafting.

THORACIC SURGERY FOUNDATION FOR RESEARCH AND EDUCATION

2004 AWARDS

TSFRE RESEARCH GRANTS provide operational support of original research efforts by thoracic surgeons who have completed their formal training, and who are seeking initial support and recognition for their research program. Awards of up to $30,000 a year for up to two years are made each year to support the work of an early-career thoracic surgeon (within five years of first faculty appointment).

Peter S. Dahlberg, MD, PhD, University of Minnesota
Robert S. Poston, MD, University of Maryland

TSFRE RESEARCH FELLOWSHIPS provide support of up to $35,000 a year for up to two years for surgical residents who have not yet completed thoracic surgical training.

Allen Cheng, MD, Stanford University
Danny Ramzy, MD, University of Toronto
Nathalie Roy, MD, Children’s Hospital Boston

NINA STARR BRAUNWALD RESEARCH FELLOWSHIPS provide up to $35,000 a year for up to two years of support for young women in academic thoracic surgery who have not yet completed surgical training.

Bao-Ngoc Nguyen, MD, University of Maryland

TSFRE/NHLBI Mentored Clinical Scientist Development Award (K08)

Kenneth R. McCurry, MD, University of Pittsburgh
Cytoprotective Effect of CO in Lung Ischemia/Reperfusion

Y. Joseph Woo, MD, University of Pennsylvania
Angiogenesis and Cardiac Growth as Heart Failure Therapy
Appendix Figure 1. Studies appearing to conform to inclusion criteria for meta-analysis.

10. Friedrich Thorac Cardiovasc Surg 37:89, 1999
32. Greilich Circulation 104:1265, 2001
33. Bidstrup Perfusion (Suppl) 77:1990
34. Boldt J Cardiothoracic Vasc Anesth 5:527, 1994
42. Bidstrup Ann Thorac Surg 69:541, 2000
44. Cosgrove Ann Thorac Surg 54:1031, 1992
45. Dietrich Anesthesiology 73:1119, 1990
46. Dietrich Anesthesiology 83:079, 1995
49. Feindt Thorac Cardiovasc Surg 41:9, 1993
66. Levy Circulation 92:2326, 1995
69. Liu Coron Artery Dis 7:609, 1996
73. Moran Perfusion 15:105, 2000
75. Santamaria Haematologica 85:1277, 2000
78. Tassani J Cardiothoracic Vasc Anesth 14:082, 2000
79. Wahba Perfusion 10:33, 1995
Appendix TABLE 1. Features of aprotinin trials of CABG included in the overview

<table>
<thead>
<tr>
<th>Trial</th>
<th>No.</th>
<th>Randomization description</th>
<th>Blinding method</th>
<th>Blinding description</th>
<th>Group pre/post comparison</th>
<th>Primary vs redo</th>
<th>Aspirin <7 d before surgery</th>
<th>Mean age (y)</th>
<th>Female (%)</th>
<th>Race</th>
<th>EF described</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alderman et al, 1998</td>
<td>870</td>
<td>Yes/adequate</td>
<td>Double</td>
<td>Yes/adequate</td>
<td>Adequate</td>
<td>Primary</td>
<td>Yes</td>
<td>62</td>
<td>13</td>
<td>No</td>
<td>28% EF <50%</td>
</tr>
<tr>
<td>Asimakopoulos et al, 2000</td>
<td>18</td>
<td>NA</td>
<td>Double</td>
<td>NA</td>
<td>Adequate</td>
<td>Primary</td>
<td>No</td>
<td>62</td>
<td>6</td>
<td>No</td>
<td>10% EF <30%</td>
</tr>
<tr>
<td>Bidstrup et al, 1989</td>
<td>80</td>
<td>Yes/adequate</td>
<td>Double</td>
<td>Yes/adequate</td>
<td>Limited info</td>
<td>Primary</td>
<td>No</td>
<td>58</td>
<td>10</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>Bidstrup et al, 1993</td>
<td>96</td>
<td>Yes/adequate</td>
<td>Double</td>
<td>Yes/adequate</td>
<td>Limited info</td>
<td>Primary</td>
<td>No</td>
<td>59</td>
<td>NA</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>Bidstrup et al, 2000</td>
<td>60</td>
<td>Yes/adequate</td>
<td>Double</td>
<td>Yes/adequate</td>
<td>Limited info</td>
<td>Primary</td>
<td>Yes</td>
<td>62</td>
<td>15</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>Blauhut et al, 1994</td>
<td>28</td>
<td>NA</td>
<td>Unblinded</td>
<td>NA</td>
<td>Limited info</td>
<td>Primary</td>
<td>No</td>
<td>63</td>
<td>18</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>Cosgrove et al, 1992</td>
<td>169</td>
<td>NA</td>
<td>Double</td>
<td>NA</td>
<td>Limited info</td>
<td>Primary</td>
<td>Yes</td>
<td>62</td>
<td>15</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>Dietrich et al, 1990</td>
<td>40</td>
<td>Yes/adequate</td>
<td>Double</td>
<td>Yes/adequate</td>
<td>Limited info</td>
<td>Primary</td>
<td>No</td>
<td>56</td>
<td>0</td>
<td>No</td>
<td>Excluded if <40%</td>
</tr>
<tr>
<td>Dietrich et al, 1995</td>
<td>30</td>
<td>Yes/adequate</td>
<td>Double</td>
<td>Yes/adequate</td>
<td>Limited info</td>
<td>Primary</td>
<td>Yes</td>
<td>67</td>
<td>0</td>
<td>No</td>
<td>26% EF <50%</td>
</tr>
<tr>
<td>Dignan et al, 2001</td>
<td>200</td>
<td>NA</td>
<td>Double</td>
<td>NA</td>
<td>Limited info</td>
<td>Primary</td>
<td>Yes</td>
<td>64</td>
<td>24</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>Feindt et al, 1991, 1993, 1995</td>
<td>80</td>
<td>Yes/adequate*</td>
<td>Double</td>
<td>Yes/adequate*</td>
<td>Limited info</td>
<td>Primary</td>
<td>No</td>
<td>57</td>
<td>0</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>Harig et al, 1999, 2001</td>
<td>20</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Imbalance</td>
<td>Primary</td>
<td>NA</td>
<td>63</td>
<td>35</td>
<td>No</td>
<td>Mean 60%</td>
</tr>
<tr>
<td>Hayashida et al, 1997</td>
<td>167</td>
<td>Yes/adequate</td>
<td>Double</td>
<td>Bias potential</td>
<td>Adequate</td>
<td>Primary</td>
<td>No</td>
<td>63</td>
<td>29</td>
<td>No†</td>
<td>8% EF <40%</td>
</tr>
<tr>
<td>Hjelms et al, 1986</td>
<td>20</td>
<td>NA</td>
<td>Double</td>
<td>NA</td>
<td>Imbalance</td>
<td>NA</td>
<td>NA</td>
<td>54</td>
<td>15</td>
<td>No</td>
<td>Mean 53%</td>
</tr>
<tr>
<td>Kalangos et al, 1994</td>
<td>165</td>
<td>Yes/adequate</td>
<td>Double</td>
<td>Yes/adequate</td>
<td>Adequate</td>
<td>Primary</td>
<td>No</td>
<td>59</td>
<td>15</td>
<td>No</td>
<td>Mean 47%</td>
</tr>
<tr>
<td>Klein et al, 1998</td>
<td>113</td>
<td>Yes/adequate</td>
<td>Double</td>
<td>Yes/adequate</td>
<td>Adequate</td>
<td>Primary</td>
<td>Yes</td>
<td>63</td>
<td>12</td>
<td>No</td>
<td>20% EF <50%</td>
</tr>
<tr>
<td>Laas et al, 1997; Lab et al, 1995</td>
<td>216</td>
<td>Yes/adequate</td>
<td>Double</td>
<td>Yes/adequate</td>
<td>Adequate</td>
<td>Mixed</td>
<td>Yes</td>
<td>62</td>
<td>18</td>
<td>Yes</td>
<td>36% EF <50%</td>
</tr>
<tr>
<td>Lemmer et al, 1994, 1995</td>
<td>531</td>
<td>Yes/adequate</td>
<td>Double</td>
<td>Yes/adequate*</td>
<td>Adequate</td>
<td>Primary</td>
<td>Yes</td>
<td>62</td>
<td>16</td>
<td>Yes</td>
<td>30% EF <50%</td>
</tr>
<tr>
<td>Levy et al, 1995</td>
<td>215</td>
<td>Yes/adequate</td>
<td>Double</td>
<td>Yes/adequate</td>
<td>Adequate</td>
<td>Redo</td>
<td>Yes</td>
<td>65</td>
<td>10</td>
<td>Yes</td>
<td>53% EF <50%</td>
</tr>
<tr>
<td>Lu et al, 1991</td>
<td>20</td>
<td>Yes/adequate</td>
<td>Double</td>
<td>Yes/adequate*</td>
<td>Limited info</td>
<td>Primary</td>
<td>NA</td>
<td>61</td>
<td>0</td>
<td>No</td>
<td>Mean 48%</td>
</tr>
<tr>
<td>Minami et al, 1993</td>
<td>49</td>
<td>Yes/adequate*</td>
<td>Double</td>
<td>Yes/adequate*</td>
<td>Limited info</td>
<td>Redo</td>
<td>NA</td>
<td>65</td>
<td>10</td>
<td>Yes</td>
<td>NA</td>
</tr>
<tr>
<td>Mifield et al, 1998</td>
<td>28</td>
<td>NA</td>
<td>Unblinded</td>
<td>NA</td>
<td>Limited info</td>
<td>Primary</td>
<td>No</td>
<td>61</td>
<td>11</td>
<td>No</td>
<td>Mean 77%</td>
</tr>
<tr>
<td>Moran et al, 2000</td>
<td>42</td>
<td>Yes/adequate</td>
<td>Double</td>
<td>Yes/adequate</td>
<td>Limited info</td>
<td>Primary</td>
<td>Yes</td>
<td>59</td>
<td>19</td>
<td>No†</td>
<td>28% EF <50%</td>
</tr>
<tr>
<td>Murkin et al, 1994</td>
<td>54</td>
<td>Yes/adequate</td>
<td>Double</td>
<td>NA</td>
<td>Limited info</td>
<td>Primary</td>
<td>Yes</td>
<td>64</td>
<td>30</td>
<td>No§</td>
<td>NA</td>
</tr>
<tr>
<td>Santamaria et al, 2000</td>
<td>NA</td>
<td>NA</td>
<td>Double</td>
<td>NA</td>
<td>Limited info</td>
<td>Primary</td>
<td>NA</td>
<td>59</td>
<td>11</td>
<td>No</td>
<td>Excluded <30%</td>
</tr>
<tr>
<td>Speekenbrink et al, 1996</td>
<td>115</td>
<td>NA</td>
<td>Yes/adequate</td>
<td>Limited info</td>
<td>Primary</td>
<td>Yes</td>
<td>60</td>
<td>18</td>
<td>18</td>
<td>Excluded <25%</td>
<td></td>
</tr>
<tr>
<td>Swart et al, 1994</td>
<td>51</td>
<td>NA</td>
<td>Yes/adequate</td>
<td>Limited info</td>
<td>Primary</td>
<td>Yes</td>
<td>52</td>
<td>34</td>
<td>No</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Tassani et al, 2000</td>
<td>20</td>
<td>NA</td>
<td>Yes/adequate</td>
<td>No info</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>No</td>
<td>NA</td>
</tr>
<tr>
<td>Wahba et al, 1995</td>
<td>80</td>
<td>Yes/adequate</td>
<td>Single*</td>
<td>Outcome*</td>
<td>Imbalance</td>
<td>NA</td>
<td>No</td>
<td>62</td>
<td>NA</td>
<td>No</td>
<td>Mean 60%</td>
</tr>
<tr>
<td>Wahba et al, 1996</td>
<td>20</td>
<td>Yes/adequate</td>
<td>Single*</td>
<td>Outcome*</td>
<td>Limited info</td>
<td>NA</td>
<td>No</td>
<td>63</td>
<td>40</td>
<td>No</td>
<td>Mean 63%</td>
</tr>
<tr>
<td>Wendel et al, 1995</td>
<td>40</td>
<td>Yes/adequate</td>
<td>Double</td>
<td>Yes/adequate</td>
<td>Limited info</td>
<td>Mixed</td>
<td>No</td>
<td>61</td>
<td>NA</td>
<td>No</td>
<td>Excluded <30%</td>
</tr>
</tbody>
</table>

*EF, Ejection fraction; NA, not available.
*Investigator reported.
†Study conducted in Japan.
‡Study conducted in Chile.
§Study conducted in Brazil.
Appendix TABLE 2. Outcomes and blood transfusion requirements in aprotinin trials of CABG included in the overview

<table>
<thead>
<tr>
<th>Trial</th>
<th>Mortality</th>
<th>MI</th>
<th>Renal failure</th>
<th>Stroke</th>
<th>Atrial fibrillation</th>
<th>Required blood transfusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aprotinin</td>
<td>Placebo</td>
<td>Aprotinin</td>
<td>Placebo</td>
<td>Aprotinin</td>
<td>Placebo</td>
</tr>
<tr>
<td>Asimakopoulos et al, 2000</td>
<td>0/40</td>
<td>1/40</td>
<td>0/40*</td>
<td>1/40*</td>
<td>0/40*</td>
<td>0/40*</td>
</tr>
<tr>
<td>Bidstrup et al, 1993</td>
<td>2/47</td>
<td>0/49</td>
<td>1/47</td>
<td>0/49</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Bidstrup et al, 2000</td>
<td>1/30</td>
<td>0/30</td>
<td>2/30</td>
<td>2/30</td>
<td>0/30</td>
<td>0/30</td>
</tr>
<tr>
<td>Blauhut et al, 1994</td>
<td>1/14</td>
<td>0/14</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Dietrich et al, 1990</td>
<td>0/20</td>
<td>0/20</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Dietrich et al, 1995</td>
<td>0/15</td>
<td>2/15</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Harder et al, 1991; Smet, 1990; Van Oeveren, 1990</td>
<td>0/40</td>
<td>0/40</td>
<td>0/40*</td>
<td>3/40*</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Harig et al, 1999</td>
<td>0/10*</td>
<td>0/10*</td>
<td>0/10*</td>
<td>1/10*</td>
<td>0/10*</td>
<td>0/10*</td>
</tr>
<tr>
<td>Havel et al, 1991</td>
<td>NA</td>
<td>NA</td>
<td>0/12</td>
<td>1/12</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Hjelms et al, 1993</td>
<td>0/40</td>
<td>0/40</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Klein et al, 1998</td>
<td>0/78*</td>
<td>2/78*</td>
<td>0/78*</td>
<td>1/78*</td>
<td>0/78*</td>
<td>0/78*</td>
</tr>
<tr>
<td>Lass et al, 1997; Lab et al, 1999</td>
<td>0/55</td>
<td>2/55</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Li et al, 1993</td>
<td>0/20</td>
<td>1/20</td>
<td>0/20</td>
<td>1/20</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Liu et al, 1995</td>
<td>1/10*</td>
<td>1/10*</td>
<td>0/10*</td>
<td>1/10*</td>
<td>0/10*</td>
<td>1/10*</td>
</tr>
<tr>
<td>Misfeld et al, 1996</td>
<td>0/14</td>
<td>0/14</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Moran et al, 2000</td>
<td>0/28</td>
<td>0/28</td>
<td>0/28</td>
<td>0/28</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Murkin et al, 1994</td>
<td>1/25</td>
<td>0/25</td>
<td>1/25</td>
<td>0/25</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Speekenbrink et al, 1996</td>
<td>0/75</td>
<td>0/37</td>
<td>5/75</td>
<td>5/37</td>
<td>0/75</td>
<td>0/37</td>
</tr>
<tr>
<td>Swart et al, 1994</td>
<td>2/25</td>
<td>3/25</td>
<td>0/26</td>
<td>1/25</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Tassani et al, 2000</td>
<td>0/10*</td>
<td>0/10*</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Wahba et al, 1995</td>
<td>2/40</td>
<td>0/40</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Wahba et al, 1996</td>
<td>0/10*</td>
<td>0/10*</td>
<td>0/10*</td>
<td>0/10*</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Wendel et al, 1995</td>
<td>0/20*</td>
<td>1/20*</td>
<td>0/20</td>
<td>1/20</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Summary (any aprotinin vs placebo)</td>
<td>53/2149</td>
<td>39/1630</td>
<td>96/2024</td>
<td>77/1531</td>
<td>26/1755</td>
<td>27/143</td>
</tr>
</tbody>
</table>

Except as noted, data are events per number of patients randomly allocated to the group.

NA, Not available.

*Investigator reported.

2. The Journal of Thoracic and Cardiovascular Surgery • September 2004