A randomized, double-blind, placebo-controlled pilot trial of triiodothyronine in neonatal heart surgery

Andrew S. Mackie, MD, SM,a,e Karen L. Booth, MD,a,e Jane W. Newburger, MD, MPH,a,e Kimberlee Gauvreau, ScD,a,e Stephen A. Huang, MD,d,e Peter C. Laussen, MBBS,a,b,e,f James A. DiNardo, MD,b,f Pedro J. del Nido, MD, PhD,c,g John E. Mayer, Jr, MD,c,g Richard A. Jonas, MD,c,g Ellen McGrath, RN,a,e Jodi Elder, RN,a,e and Stephen J. Roth, MD, MPH ‡a,e

Objective: This study was undertaken to evaluate the effect of triiodothyronine replacement on the early postoperative course of neonates undergoing aortic arch reconstruction.

Methods: We performed a randomized, double-blind, placebo-controlled trial of triiodothyronine supplementation in neonates undergoing either a Norwood procedure or two-ventricle repair of interrupted aortic arch and ventricular septal defect. Patients were assigned to receive a continuous infusion of triiodothyronine (0.05 μg/kg/h) or placebo for 72 hours after cardiopulmonary bypass. Primary end points were a composite clinical outcome score and cardiac index at 48 postoperative hours.

Results: We enrolled 42 patients (triodothyronine n = 22, placebo n = 20). Baseline characteristics were similar in the treatment groups. Study drug was discontinued prematurely because of hypertension (n = 1) and ectopic atrial tachycardia (n = 1), both cases in the triiodothyronine group. Free and total triiodothyronine levels were higher in the triiodothyronine group than in the placebo group at 24, 48, and 72 postoperative hours (P < .001). The median clinical outcome scores were 2.0 (range 0-4) with triiodothyronine and 2.0 (range 0-7) with placebo (P = .046). Compared with those in the placebo group, neonates assigned to triiodothyronine had shorter median time to negative fluid balance (2.0 vs 2.5 days, P = .027). Cardiac index values were 2.11 ± 0.64 L/min · m² with triiodothyronine and 2.05 ± 0.72 L/min · m² with placebo (P = .81). Heart rate and diastolic blood pressure were not influenced by triiodothyronine supplementation, but systolic blood pressure was higher in the triiodothyronine group (P < .001). No serious adverse events were attributed to triiodothyronine administration.

Conclusion: Triiodothyronine supplementation was safe and resulted in more rapid achievement of negative fluid balance after aortic arch reconstruction. Cardiac index at 48 hours was not significantly improved.

Low cardiac output syndrome is a common complication of neonatal cardiac surgery.1 Contributing factors include myocardial ischemia during aortic crossclamping, the effects of cardioplegia, the inflammatory reaction to cardiopulmonary bypass (CPB), hypothermia, and reperfusion injury.2 Low cardiac output syndrome is associated with increased mortality and morbidity.3,4 The underlying pathophysiology is multifactorial, but the role of endogenous triiodothyronine deficiency remains uncertain.5-9 In this study, we evaluated the effect of exogenous triiodothyronine on the early postoperative course of neonates undergoing aortic arch reconstruction.
output in the postoperative patient continues to be a source of significant morbidity, sometimes warranting the use of mechanical circulatory support.\(^2\) Hoffman and colleagues\(^3\) demonstrated that the incidence of low cardiac output syndrome in children undergoing corrective cardiac procedures is reduced by high-dose milrinone, a phosphodiesterase inhibitor. Additional therapies that both support the myocardium and lower systemic vascular resistance after congenital heart surgery would be valuable in treating the neonates at highest risk.

Thyroid hormones have important effects on cardiovascular function.\(^4\) These include an increase in cardiac contractility\(^5\) and a lowering of systemic vascular resistance mediated by dilation of resistance arterioles in the peripheral circulation.\(^6\) However, levels of triiodothyronine (T\(_3\)), the biologically active hormone in cardiac myocytes, are significantly depressed in infants and older children after CPB.\(^7,8\) Low T\(_3\) levels in the early postoperative period therefore may contribute to the evolution of low cardiac output syndrome. Previous studies have suggested that neonates and patients undergoing more lengthy procedures may benefit from T\(_3\) replacement, with improved cardiac output and more favorable intensive care unit (ICU) acuity scores.\(^9,10\)

The purpose of this study was to evaluate the effect of T\(_3\) replacement on the early postoperative course in a homogeneous group of high-risk neonates undergoing either the Norwood procedure or repair of ventricular septal defect and interrupted aortic arch. Specifically, we tested the hypothesis that T\(_3\) replacement plus conventional therapy would be associated with better early postoperative outcome than would placebo plus conventional therapy.

Methods

Study Participants

A patient satisfied the inclusion criteria if he or she was (1) a neonate who had a diagnosis of hypoplastic left heart syndrome or another functional single-ventricle lesion with aortic arch obstruction and was scheduled to undergo the Norwood procedure with either a modified Blalock-Taussig shunt or a right ventricle–to–pulmonary artery conduit or (2) a neonate who had ventricular septal defect and interrupted aortic arch and was scheduled to undergo two-ventricle repair. Patients were excluded if they had birth weight lower than 2.3 kg, preoperative tachyarrhythmia, clinical sepsis confirmed by culture, serum creatinine greater than 133 \(\mu\)mol/L (1.5 mg/dL) within 24 hours of surgery, or a known thyroid or metabolic disorder. Written, informed consent was required from the parents or legal guardians before randomization.

Surgical Techniques

Patients with a functional single ventricle and aortic arch obstruction underwent a Norwood procedure with a modified Blalock-Taussig shunt\(^1\) or a right ventricle–to–pulmonary artery polytetrafluoroethylene conduit (Gore-Tex conduit; W. L. Gore & Associates, Inc, Flagstaff, Ariz)\(^12,13\) at the discretion of the attending surgeon. Patients with interrupted aortic arch and two functional ventricles underwent complete repair as previously described.\(^14\) A pH-stat perfusion strategy was used in all patients. Methylprednisolone (30 mg/kg) was administered at initiation of CPB, and deep hypothermic circulatory arrest was used routinely, during which core temperatures were lowered to 18°C. Continuous ultrafiltration was used as patients were being rewarmed and weaned from CPB.

Study Design

The study had two phases. Phase 1 was an open-label, dose-finding phase. The first 5 patients received an infusion of T\(_3\) (King Pharmaceuticals, Cary, NC) for 72 hours beginning at the completion of CPB at a dose of 0.0625 \(\mu\)g/kg/h; 2 subsequent patients received a dose of 0.05 \(\mu\)g/kg/h) on the basis of an analysis of serum T\(_3\) levels in the initial 5 patients. Phase 2 was a randomized, double-blind, placebo-controlled, single-center study. Randomization was performed with a computer-based random-number generator in permuted blocks of 2 and 4 and was stratified by surgeon and surgical procedure (Norwood palliation or ventricular septal defect and interrupted aortic arch repair). Eligible patients whose parents consented to study participation were randomly assigned preoperatively to receive a 72-hour infusion of either T\(_3\) (0.05 \(\mu\)g/kg/h) or placebo (0.9% sodium chloride solution). Vasoactive infusions and other routine postoperative care were administered at the discretion of the surgical and ICU teams. Levels of total and free T\(_4\), total and free thyroxine (T\(_4\)), thyroid-stimulating hormone, and T\(_3\) resin uptake were measured before initiation of CPB; at the end of CPB before starting study drug; at 24, 48, and 72 postoperative hours; and at 7 and 14 postoperative days. Total T\(_3\) and T\(_4\) concentrations were measured by competitive chemiluminescent immunoassay, free T\(_4\) was measured by equilibrium tracer dialysis, and free T\(_3\) was measured by direct dialysis. All specimens were analyzed at a core laboratory (Nichols Institute, San Juan Capistrano, Calif).

Composite Clinical Outcome Score

The Journal of Thoracic and Cardiovascular Surgery Volume 130, Number 3 811

<table>
<thead>
<tr>
<th>Clinical variable</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time until negative fluid balance first achieved (d)</td>
<td>≤3 5-6</td>
</tr>
<tr>
<td>Time until sternal closure (d)</td>
<td>≤2 3-4</td>
</tr>
<tr>
<td>Time until first extubation (d)</td>
<td>≤4 5-8</td>
</tr>
</tbody>
</table>

Each patient received a score between 0 and 6 by adding the individual scores for each clinical variable. A score of 7 was assigned to patients who died or required extracorporeal membrane oxygenation support. d, Days.
Study End Points
The primary end points were as follows: (1) a composite clinical score created for the trial and (2) cardiac index (CI) measured at 48 postoperative hours. The composite clinical score, derived through consensus by experts in pediatric cardiac intensive care, consisted of variables that reflect the rate of early postoperative recovery (Table 1). Lower scores represented a more favorable postoperative course. CI was measured at 48 postoperative hours because the nadir in T3 level has been shown to occur at this time in pediatric cardiac patients, so we believed that we would be most likely to detect a difference between treatment groups at that point. CI was determined by simultaneously measuring oxygen consumption (CO2) with a previously validated real-time gas-exchange technique,15 hemoglobin (in grams per liter), venous oxygen saturation from the superior vena cava (SsvcO2) and arterial oxygen saturation (SaO2) by co-oximetry, and entering values into the following formula:

$$Q_s = \frac{\text{CO}_2 \times \text{hemoglobin} \times 100}{\frac{(S_aO_2 - S_{svcO_2}) \times 1.36 \times \text{hemoglobin} \times 100}{\text{SaO}_2}}$$

where Qs is the systemic cardiac output. Patients were sedated, paralyzed, and mechanically ventilated, and had a cuffed tracheal tube to prevent air leak so that the accuracy of CO2 measurements could be optimized. The inspired fraction of oxygen was not higher than 0.40 at the time of these measurements.

Secondary end points included serum lactate levels at 12, 24, and 48 hours after the termination of CPB, incidence of serious adverse events (recorded until the time of hospital discharge), oxygen delivery (DO2), and the ratio DO2/CO2, which reflects the relative excess of DO2.17 DO2 was calculated as the product of CaO2/1.36/hemoglobin/SaO2/100.

Inotrope score was determined for the initial 5 postoperative days, as modified from Wernovsky and coworkers.1

Serum cortisol was measured immediately before CPB and at 24 and 48 hours after the operation. Ionized calcium was measured at 12, 24, and 48 postoperative hours.

Patient Safety
Criteria for premature termination of the study drug infusion were as follows: (1) sinus tachycardia (>200 beats/min) lasting longer than 15 minutes, (2) high systolic blood pressure (>90 mm Hg) for longer than 15 minutes, or (3) any tachyarrhythmia lasting longer than 30 seconds. An external Data Safety and Monitoring Board was established to oversee the safety of study participants. The study was approved by the Committee on Clinical Investigation at Children’s Hospital Boston.

Statistical Analysis
Sample-size calculations were based on the primary study end point of CI at 48 postoperative hours. Assuming that mean CI
would be 2.0 L/min·m² with SD 0.5 L/min·m² in the placebo group, a sample size of 21 patients in each arm was required to detect a 25% increase in CI in the T₃ group, with a 2-tailed, 2-sample t test conducted at the .05 level with 90% power. Analyses were performed on an intent-to-treat basis. Comparisons of preoperative, intraoperative, and postoperative variables between treatment groups, including the primary and secondary outcome variables, were made with linear regression analysis or the Wilcoxon rank sum test for continuous variables, the Wilcoxon rank sum test for ordinal variables, and the Fisher exact test for categorical variables. Repeated measures analysis of variance was used for comparisons of serial measurements of heart rate, blood pressure, and thyroid function tests across time. Analyses were performed with Statistical Analysis Systems software, version 9 (SAS Institute, Inc, Cary, NC).

Results

Between July 2002 and April 2004, a total of 61 patients were eligible for study participation. Participation was declined by parents or guardians of 5 patients, and insufficient time to enroll before surgery prevented participation of an additional 6 patients. The remaining 50 patients were enrolled, 7 to the open-label phase and 43 to the randomized phase. A single patient was withdrawn from the randomized phase before initiation of study drug because extracorporeal membrane oxygenation support was required in the operating room after CPB. The remaining 42 patients (T₃ n = 22, placebo n = 20) form the study group for analysis. The patient who was withdrawn had been randomly assigned to the placebo arm; she eventually died and accounts for the only in-hospital death.

The first 5 patients of the open-label phase received a T₃ dose of 0.0625 μg/kg/h and had mean free T₃ levels of 7.3 ± 4.0 pmol/L at 24 postoperative hours, 8.7 ± 0.4 pmol/L at 48 hours, and 7.9 ± 2.4 pmol/L at 72 hours (normal range 4.3-8.0 pmol/L; Nichols Institute, San Juan Capistrano, Calif). The next 2 patients received a dose of 0.05 μg/kg/h and had mean free T₃ levels of 6.0 pmol/L (24 hours), 7.7 pmol/L (48 hours), and 4.7 pmol/L (72 hours). The latter 2 patients formed the basis for a T₃ dose of 0.05 μg/kg/h in the randomized phase.

There were no statistically significant differences between the two treatment groups with respect to demographic variables, diagnosis, surgical procedure, or duration of CPB (Table 2). The proportion of patients who underwent Norwood procedures with a right ventricle–to–pulmonary artery conduit was comparable in the T₃ and placebo groups. The duration of deep hypothermic circulatory arrest was shorter in the T₃ group than in the placebo group (Table 2).

The study drug was stopped 2 hours prematurely in 1 patient because of mild, brief hypertension; the drug was stopped 33 hours prematurely in a second patient because of ectopic atrial tachycardia, which was transient (a 7-minute episode with a maximum heart rate of 231 beats/min) and hemodynamically well tolerated. The patient with ectopic atrial tachycardia had subsequent episodes of tachyarrhythmia as late as 6 days after termination of study drug. Both patients were in the T₃ arm. Neither patient had a serious adverse event. Temporary loss of peripheral venous access or lack of availability of study drug resulted in an interruption of study drug infusion in 3 patients in the T₃ arm and 1 patient in the placebo arm. No interruption lasted longer than 2 hours. All other patients received the study drug as intended.

Total and free T₃ levels were significantly higher in the T₃ group than in the placebo group at 24, 48, and 72 postoperative hours (P < .001).
postoperative hours but were similar between treatment groups immediately before and after CPB and at 7 and 14 postoperative days (Figure 1, A and B). Levels of total and free T₄, thyroid-stimulating hormone, and T₃ resin uptake did not differ between the two groups at any time before or after surgery (data not shown).

Composite clinical outcome score (Table 1) was a primary end point. The median scores were 2.0 (range 0-4) in the T₃ group and 2.0 (range 0-7) in the placebo group, a significant difference (P = .046) that arose from a difference in the distribution of values; the only patients with a score greater than 4 were in the placebo group (Table 3). The median time until a negative fluid balance was first achieved was lower in the T₃ group, at 2.0 days (range 1-4 days), than in the placebo group (2.5 days, range 2-3 days, P = .027). After controlling for duration of circulatory arrest, the magnitude of this effect did not change (P = .05).

Time until sternal closure and duration of mechanical ventilation were not significantly different between treatment groups.

Although our trial was designed with CI as one of the two primary end points, its measurement was not feasible in 9 patients in the T₃ group and 5 patients in the placebo group because of unreliable CO₂ data (n = 10) or lack of a superior vena cava blood sample at 48 postoperative hours (n = 4). Among patients in whom CI could be measured, the mean values at 48 postoperative hours were 2.11 ± 0.64 L/min·m² in the T₃ group and 2.05 ± 0.72 L/min·m² in the placebo group (P = .81). The mean arterial pH was similar between the T₃ and placebo groups when CI was measured (7.44 ± 0.05 and 7.43 ± 0.04, respectively, P = .64), as was the mean Paco₂ (49.4 ± 6.30 mm Hg and 47.3 ± 7.13 mm Hg, respectively, P = .33).

Systolic blood pressure was significantly higher in the T₃ group (P < .001; Figure 2, A), as was mean blood pressure (P = .02; Figure 2, B). However, heart rate and diastolic blood pressure were not different between treatment groups (data not shown).

Do₂ values at 48 postoperative hours were 342 ± 109 mL/(min·m²) in the T₃ group and 321 ± 108 mL/

<table>
<thead>
<tr>
<th>Outcome</th>
<th>T₃ (n = 22)</th>
<th>Placebo (n = 20)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite clinical score</td>
<td>2.0 (0-4)</td>
<td>2.0 (0-7)</td>
<td>.046</td>
</tr>
<tr>
<td>Time until first negative fluid balance (d)</td>
<td>2.0 (1-4)</td>
<td>2.5 (2-3)</td>
<td>.027</td>
</tr>
<tr>
<td>Time until sternal closure (d)</td>
<td>2.5 (0-6)</td>
<td>4.0 (0-6)</td>
<td>.14</td>
</tr>
<tr>
<td>Time until first extubation (d)</td>
<td>6.0 (3-17)</td>
<td>6.0 (4-13)</td>
<td>.38</td>
</tr>
<tr>
<td>In-hospital death* (No.)</td>
<td>0</td>
<td>2 (10%)</td>
<td>.22</td>
</tr>
<tr>
<td>Extracorporeal membrane oxygenation (No.)</td>
<td>0</td>
<td>2 (10%)</td>
<td>.22</td>
</tr>
</tbody>
</table>

Each subcomponent of the clinical score is also presented. Results are presented as median with range as appropriate. *One patient randomly assigned to the placebo group died at home 5 weeks after hospital discharge; 1 patient was randomly assigned to the placebo group but excluded post hoc before initiation of study drug and died in the hospital.
Thyroid hormones are important for the normal function of all organs, and low free T₃ levels in the placebo group may have impaired intrinsic renal function. Alternatively, higher systolic blood pressures in the T₃ group may have contributed to improved renal perfusion and glomerular filtration. The difference in circulatory arrest times between the T₃ and placebo groups, however, does not explain the difference in time to negative fluid balance.

Limitations
The clinical outcome score used has not been previously validated. Nonetheless, our score discriminated patients receiving T₃ infusion from those receiving placebo. The inability to measure CI in an important percentage (33%) of subjects was also a limitation. Although free from the assumptions inherent in measuring CI by Doppler echocardiography, direct measurement of CO₂ by real-time gas exchange requires a sedated, mechanically ventilated patient who has not had a change in hemodynamic or respiratory status for at least 1 hour. Furthermore, “true” mixed venous oxygen saturation could not be measured in patients undergoing the Norwood procedure. We approximated this variable by measuring SsvCO₂. This value is influenced by cerebral blood flow, which in turn is influenced not only by cardiac output but also by serum pH and PaCO₂. However, arterial pH and PaCO₂ did not differ between the T₃ and placebo groups.

Discussion
In a population of neonates undergoing high-risk open heart surgery, we found that postoperative treatment with T₃ for 72 hours was associated with significantly better clinical outcome scores than was treatment with placebo, with the difference attributable to more rapid achievement of a negative fluid balance in the T₃ group. Systolic and mean blood pressures were higher in T₃-treated patients. For technical reasons, we were unable to measure CI in a third of the patients; however, among those in whom CI was measured, we found no difference between treatment groups. T₃ supplementation did not increase CO₂ at the expense of DO₂ and we measured CI at 48 rather than 24 postoperative hours. In addition, we administered a continuous infusion of T₃ rather than bolus dosing, without adjustment of the infusion rate according to T₃ levels. Only one previous pediatric study has used a continuous infusion, and those investigators adjusted the infusion rate to maintain serum total T₃ levels within a target range; the doses used were also as great as 3 times the dose we used. However, we achieved T₃ levels in the treatment group that were within normal range and were significantly higher than in the placebo group.

The more rapid achievement of a negative fluid balance in children treated with T₃ may have several explanations. Thyroid hormones are important for the normal function of all organs, and low free T₃ levels in the placebo group may have impaired intrinsic renal function. Alternatively, higher systolic blood pressures in the T₃ group may have contributed to improved renal perfusion and glomerular filtration. The difference in circulatory arrest times between the T₃ and placebo groups, however, does not explain the difference in time to negative fluid balance.

Previous studies on T₃ supplementation in pediatric patients have suggested that its administration may benefit recovery after cardiac surgery. Mainwaring and colleagues gave two bolus doses of T₃ after the Fontan procedure to 10 children aged 19 to 42 months. Relative to a historical control group, the T₃ group had a significantly shorter period of mechanical ventilation. Bettendorf and associates randomly allocated 40 children undergoing a wide variety of cardiac procedures to receive bolus dosing of T₃ or placebo. Patients in the T₃ group had lower Therapeutic Intervention Scoring System (TISS) scores than did those in the placebo arm. Cardiac output was higher in the treatment group 24 hours after surgery, as measured by Doppler echocardiography. Chowdhury and coworkers randomly assigned 28 children aged 0 to 18 years to a 5-day continuous infusion of T₃ (0.05-0.15 μg/[kg · h]) or placebo. Among the subset of neonates (n = 9), the T₃ group had lower TISS scores and lower inotrope requirements. The T₃ group also had a trend toward higher mixed venous oxygen saturations, fewer days of mechanical ventilation, and a shorter postoperative stay.

Our findings may differ from those of other authors on the basis of several factors. We used different primary outcome measures (a composite clinical outcome score and CI determined by real-time gas-exchange measurement of CO₂), and we measured CI at 48 rather than 24 postoperative hours. In addition, we administered a continuous infusion of T₃ rather than bolus dosing, without adjustment of the infusion rate according to T₃ levels. Only one previous pediatric study has used a continuous infusion, and those investigators adjusted the infusion rate to maintain serum total T₃ levels within a target range; the doses used were also as great as 3 times the dose we used. However, we achieved T₃ levels in the treatment group that were within normal range and were significantly higher than in the placebo group.

In the T₃ group and 69.1 in the placebo group (P = .62). Co₂ values, measured at the same time, were 110 ± 22 mL/(min · m²) in the T₃ group and 108 ± 24 mL/(min · m²) in the placebo group (P = .82). The DO₂/CO₂ ratios were also equivalent at 3.20 ± 0.91 in the T₃ group and 3.22 ± 1.31 in the placebo group (P = .96).

The mean 5-day inotrope scores were 63.2 ± 32.4 mg/kg in the T₃ group and 69.1 ± 32.3 mg/kg in the placebo group (P = .56). Mean inotrope scores at 12, 24, and 48 hours were also similar between treatment groups (data not shown). The median ICU stays were 7.5 days (range 4-47 days) in the T₃ group and 8.5 days (range 5-96 days) in the placebo group (P = .52). The median total hospital stays were 16.5 days (range 8-95 days) in the T₃ group and 18 days (range 9-112 days) in the placebo group (P = .59). Median times until enteral feeding was started were 4 days (range 2-7 days) in the T₃ group and 5 days (range 2-7 days) in the placebo group (P = .35). There were no differences in serum lactate, ionized calcium, or cortisol between groups either before or after the operation (data not shown).

The incidence of serious adverse events, including cardiac arrest, renal failure, and infectious complications, did not differ between treatment groups. No serious adverse events were attributed directly to the administration of study medication.
placecutaneous groups at the time of CI determination. Finally, transcutaneous absorption of iodine, well described in infants, is a potential confounder of our study findings. Although all patients were exposed to iodine for skin antisepsis during the perioperative period, no attempt was made to quantify either the volume of iodine used or the duration of exposure on a per patient basis.

We observed a shorter ICU stay and total hospitalization in the T₃ group. Although these findings were not statistically significant, our study lacked sufficient power to demonstrate a significant difference in these end points. A larger, multicenter study might be able to find an impact of T₃ supplementation on the durations of ICU and hospital stay. The potential benefit of T₃ supplementation in T₃-deficient patients who are further out from surgery and yet remain critically ill is also unknown.

In summary, we found that T₃ supplementation in neonates after high-risk cardiac surgery was safe and resulted in favorable composite clinical outcome scores in the early postoperative period as a result of more rapid achievement of a negative fluid balance. CO₂ was not increased at the postoperative period as a result of more rapid achievement of favorable composite clinical outcome scores in the early postoperative period. The routine use of T₃ in neonates after cardiac surgery is not supported by our findings; however, patients with oliguria and marginal blood pressure may benefit. Larger, multicenter studies should examine the role of T₃ repletion in children undergoing other congenital heart procedures and the impact of T₃ supplementation in patients with prolonged critical illness after neonatal cardiac surgery.

We acknowledge the members of the Data Safety and Monitoring Board: Lynn Mahoney, MD (chair), Children’s Medical Center of Dallas; Henry Feldman, PhD, Children’s Hospital Boston; Thomas P. Foley, Jr, MD, Children’s Hospital of Pittsburgh; Thomas Kulik, MD, C.S. Mott Children’s Hospital; Lainie Ross, MD, PhD, MacLean Center of Clinical Medical Ethics; and James S. Tweddell, MD, Children’s Hospital of Wisconsin. We also acknowledge Lida Kyn for computer programming; Donna Donati and Donna Duva for data entry; nurses of the Cardiac Intensive Care Unit, Children’s Hospital Boston, for managing study drug infusion and blood work as needed; The Glaser Pediatric Research Network, which provided salary support for Andrew Mackie; King Pharmaceuticals (Cary, NC), for providing study drug; and the General Clinical Research Center, Children’s Hospital Boston, for funding all laboratory investigations.

References

