Inulin clearance > Literature Section

## Publications for Inulin clearance (3)

Qi Z, Whitt I, Mehta A, Jin J, Zhao M, Harris RC, Fogo AB, Breyer MD. Serial determination of glomerular filtration rate in conscious mice using
FITC-inulin clearance. *Am J Physiol Renal Physiol* (2004) **286**:F590-6

View abstract View in PubMed

Two nonradioactive methods for determining glomerular filtration rate (GFR) in conscious mice using FITC-labeled inulin (FITC-inulin) were evaluated. The first method measured GFR using clearance kinetics of plasma FITC-inulin after a single bolus injection. Based on a two-compartment model, estimated GFR was 236.69 +/- 16.55 and 140.20 +/22.27 microl/min in male and female C57BL/6J mice, respectively. Total or (5/6) nephrectomy reduced inulin clearance to 0 or 32.80 +/9.32 microl/min, respectively. Conversely, diabetes mellitus induced by streptozotocin was associated with increased GFR. The other approach measured urinary inulin clearance using intraperitoneal microosmotic pumps to deliver FITC-inulin and metabolic cages to collect timed urine samples. This approach yielded similar GFR values of 211.11 +/26.56 and 157.36 +/20.02 microl/min in male and female mice, respectively. These studies demonstrate the feasibility of repeated nonisotopic measurement of inulin clearance in conscious mice.

Hem A, Smith AJ, Solberg P. Saphenous vein puncture for blood sampling of the mouse, rat, hamster, gerbil,
guinea pig, ferret and mink. *Lab Anim* (1998) **32**:364-8

View abstract View in PubMed

A method is described for blood collection from the lateral saphenous vein. This enables rapid sampling, which if necessary can be repeated from the same site without a need for new puncture wounds. The method is a humane and practical alternative to cardiac and retro-orbital puncture, in species where venepuncture has traditionally been regarded as problematic.

Sturgeon C, Sam AD 2nd, Law WR. Rapid determination of glomerular filtration rate by single-bolus inulin: a
comparison of estimation analyses. *J Appl Physiol (1985)* (1998) **84**:2154-62

View abstract View in PubMed

Rapid measurement of glomerular filtration rate (GFR) by an inulin single-bolus technique would be useful, but its accuracy has been questioned. We hypothesized that reported inaccuracies reflect the use of inappropriate mathematical models. GFR was measured in 14 intact and 5 unilaterally nephrectomized conscious male Sprague-Dawley rats (mean weight 368 +/12 g) by both single-bolus (25 mg/kg) and constant-infusion techniques (0.693 mg . kg-1 . min-1). The temporal decline in plasma inulin concentration was analyzed through biexponential curve fitting, which accounted for renal inulin loss before complete vascular and interstitial mixing. We compared our mathematical model based on empirical rationale with those of other investigators whose studies suggest inaccuracy of single-bolus methods. Our mathematical model yielded GFR values by single bolus that agreed with those obtained by constant infusion [slope = 0.94 +/0.16 (SE); y intercept = 0.23 +/0.64; r = 0.82]. In comparison to the data obtained by constant inulin infusion, this method yielded a very small bias of -0.0041 +/0.19 ml/min. Two previously reported models yielded unsatisfactory values (slope = 1. 46 +/0.34, y intercept = 0.47 +/1.5, r = 0.72; and slope = 0.17 +/1.26, y intercept = 17.15 +/5.14, r = 0.03). The biases obtained by using these methods were -2.21 +/0.42 and -13.90 +/1. 44 ml/min, respectively. The data indicate that when appropriate mathematical models are used, inulin clearance after single-bolus delivery can be used to measure GFR equivalent to that obtained by constant infusion of inulin. Attempts to use methods of analysis for simplicity or expediency can result in unacceptable measurements relative to the clinical range of values seen.

## Additional content related to Inulin clearance

Last updated on 2013-11-06 Moderated by Jimmy Hao