Translating research into personalized care

Home > Histology and Morphometry > Kidney injury tissue samples

A novel key function of the Core is to provide archival tissue from both normal and injured mouse and rat kidney for array analysis for the investigation of expression profiles of novel molecules. Investigators in the VKDC have decades of experience conducting experiments in the area of renal physiology and pathophysiology in mice and rats. Fortunately, paraffin-embedded kidney tissue samples from many of these experiments have been retained and are available for further studies. Some experimental models are commonly used in kidney research, such as salt restriction, manipulation of the renin angiotensin system, 5/6 nephrectomy and others. Many of these animal models are expensive and time-consuming to produce. For example, in studies that characterized severity of diabetic nephropathy in six inbred mouse strains including C57BL/6J, DBA/2J, FVB/NJ, MRL/MpJ, A/J, and KK/HlJ mice, the experiments lasted for more than 25 weeks (1). Moreover, Brattleboro (BB) rats, which are deficient in vasopressin, cost over $200.00 per adult animal (Harlan, Indianapolis, IN) (2).

Publications for Kidney injury tissue samples (2)

Qi Z, Fujita H, Jin J, Davis LS, Wang Y, Fogo AB, Breyer MD. Characterization of susceptibility of inbred mouse strains to diabetic nephropathy. Diabetes (2005) 54:2628-37
View abstract View in PubMed

Differential susceptibility to diabetic nephropathy has been observed in humans, but it has not been well defined in inbred strains of mice. The present studies characterized the severity of diabetic nephropathy in six inbred mouse strains including C57BL/6J, DBA/2J, FVB/NJ, MRL/MpJ, A/J, and KK/HlJ mice. Diabetes mellitus was induced using low-dose streptozotocin injection. Progression of renal injury was evaluated by serial measurements of urinary albumin excretion, glomerular filtration rate (GFR), and terminal assessment of renal morphology over 25 weeks. Despite comparable levels of hyperglycemia, urinary albumin excretion and renal histopathological changes were dramatically different among strains. DBA/2J and KK/HlJ mice developed significantly more albuminuria than C57BL/6J, MRL/MpJ, and A/J mice. Severe glomerular mesangial expansion, nodular glomerulosclerosis, and arteriolar hyalinosis were observed in diabetic DBA/2J and KK/HlJ mice. Glomerular hyperfiltration was observed in all diabetic strains studied except A/J. The significant decline in GFR was not evident over the 25-week period of study, but diabetic DBA/2J mice exhibited a tendency for GFR to decline. Taken together, these results indicate that differential susceptibility to diabetic nephropathy exists in inbred mice. DBA/2J and KK/HlJ mice are more prone to diabetic nephropathy, whereas the most widely used C57BL/6J mice are relatively resistant to development of diabetic nephropathy.

Zhang MZ, Sanchez Lopez P, McKanna JA, Harris RC. Regulation of cyclooxygenase expression by vasopressin in rat renal medulla. Endocrinology (2004) 145:1402-9
View abstract View in PubMed

The antagonism between prostaglandin and vasopressin represents a classic negative feedback loop. It is not clear whether cyclooxygenase (COX)-2 and/or COX-1 expression is involved in elevated prostaglandin production stimulated by vasopressin in vivo. In the present study, we explored vasopressin regulation of medullary COX-2 and COX-1 expression acutely and chronically in rats. Medullary COX-1 expression was moderately lower and COX-2 expression was significantly lower in adult male Brattleboro rats than age-matched Long-Evans controls. Chronic treatment of Brattleboro rats with vasopressin for 1 wk led to a decrease in urine volume and a moderate increase in medullary COX-1; in contrast, medullary COX-2 expression was almost undetectable in untreated rats but was dramatically up-regulated with vasopressin treatment and was accompanied by increased urinary prostaglandin E(2) excretion. Further investigation revealed that both V1 and V2 receptors were involved in chronic medullary COX-1 and COX-2 up-regulation. Acute treatment with specific V1 or V2 receptor agonists resulted in specific increases in medullary COX-2, which was prevented by furosemide. Vasopressin did not affect COX-2 expression in cultured renomedullary interstitial cells. These data demonstrate that vasopressin stimulates medullary COX-2 expression through activation of both V1 and V2 receptors, and this stimulation is indirect and probably involves increased medullary electrolyte tonicity.

ServiceCost (Vanderbilt)Cost (non-Vanderbilt)

Click on the service name to request the service.

Additional content related to Kidney injury tissue samples


Last updated on 2013-11-06 Moderated by Agnes Fogo